These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 10591910)

  • 1. Changed visuomotor transformations during and after prolonged microgravity.
    Sangals J; Heuer H; Manzey D; Lorenz B
    Exp Brain Res; 1999 Dec; 129(3):378-90. PubMed ID: 10591910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery of the locomotor function after prolonged microgravity exposure. I. Head-trunk movement and locomotor equilibrium during various tasks.
    Courtine G; Pozzo T
    Exp Brain Res; 2004 Sep; 158(1):86-99. PubMed ID: 15164151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slowing of human arm movements during weightlessness: the role of vision.
    Mechtcheriakov S; Berger M; Molokanova E; Holzmueller G; Wirtenberger W; Lechner-Steinleitner S; De Col C; Kozlovskaya I; Gerstenbrand F
    Eur J Appl Physiol; 2002 Oct; 87(6):576-83. PubMed ID: 12355199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered astronaut lower limb and mass center kinematics in downward jumping following space flight.
    Newman DJ; Jackson DK; Bloomberg JJ
    Exp Brain Res; 1997 Oct; 117(1):30-42. PubMed ID: 9386002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perceptual-motor performance and associated kinematics in space.
    Fowler B; Meehan S; Singhal A
    Hum Factors; 2008 Dec; 50(6):879-92. PubMed ID: 19292011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole-Body Movements in Long-Term Weightlessness: Hierarchies of the Controlled Variables Are Gravity-Dependent.
    Casellato C; Pedrocchi A; Ferrigno G
    J Mot Behav; 2017; 49(5):568-579. PubMed ID: 28027021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impairments of manual tracking performance during spaceflight are associated with specific effects of microgravity on visuomotor transformations.
    Heuer H; Manzey D; Lorenz B; Sangals J
    Ergonomics; 2003 Jul; 46(9):920-34. PubMed ID: 12775489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whole body pointing movements in transient microgravity: preliminary results.
    Tagliabue M; Pedrocchi A; Gower V; Ferrigno G; Pozzo T
    J Gravit Physiol; 2004 Jul; 11(2):P39-40. PubMed ID: 16231449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voluntary head stabilisation in space during oscillatory trunk movements in the frontal plane performed before, during and after a prolonged period of weightlessness.
    Amblard B; Assaiante C; Vaugoyeau M; Baroni G; Ferrigno G; Pedotti A
    Exp Brain Res; 2001 Mar; 137(2):170-9. PubMed ID: 11315545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensorimotor and perceptual function of muscle proprioception in microgravity.
    Roll JP; Popov K; Gurfinkel V; Lipshits M; André-Deshays C; Gilhodes JC; Quoniam C
    J Vestib Res; 1993; 3(3):259-73. PubMed ID: 8275261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinematic and dynamic processes for the control of pointing movements in humans revealed by short-term exposure to microgravity.
    Papaxanthis C; Pozzo T; McIntyre J
    Neuroscience; 2005; 135(2):371-83. PubMed ID: 16125854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Velocity of head movements and sensory-motor adaptation during and after short spaceflight.
    Hlavacka F; Kornilova LN
    J Gravit Physiol; 2004 Jul; 11(2):P13-6. PubMed ID: 16231430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effects of microgravity on human cognitive function in space flight].
    Yang JJ; Shen Z
    Space Med Med Eng (Beijing); 2003 Dec; 16(6):463-7. PubMed ID: 15008197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arm end-point trajectories under normal and micro-gravity environments.
    Papaxanthis C; Pozzo T; McIntyre J
    Acta Astronaut; 1998; 43(3-6):153-61. PubMed ID: 11541921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motor function in microgravity: movement in weightlessness.
    Lackner JR; DiZio P
    Curr Opin Neurobiol; 1996 Dec; 6(6):744-50. PubMed ID: 9000028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal relationship between postural and focal components of a whole-body reaching movement: a study case of short-term adaptation in microgravity condition.
    Patron J; Stapley PJ; Pozzo T
    J Gravit Physiol; 2004 Jul; 11(2):P23-4. PubMed ID: 16231434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Visual–manual tracking after long spaceflight].
    Fiziol Cheloveka; 2016; 42(3):82-93. PubMed ID: 29446899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis of motion control in long term microgravity.
    Baroni G; Ferrigno G; Anolli A; Andreoni G; Pedotti A
    Acta Astronaut; 1998; 43(3-6):131-51. PubMed ID: 11541920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of head-to-trunk position on the direction of arm movements before, during, and after space flight.
    Berger M; Lechner-Steinleitner S; Kozlovskaya I; Holzmüller G; Mescheriakov S; Sokolov A; Gerstenbrand F
    J Vestib Res; 1998; 8(5):341-54. PubMed ID: 9770653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perception of tilt (somatogravic illusion) in response to sustained linear acceleration during space flight.
    Clément G; Moore ST; Raphan T; Cohen B
    Exp Brain Res; 2001 Jun; 138(4):410-8. PubMed ID: 11465738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.