These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 10592066)

  • 61. Expression of GAP-43 mRNA in the adult mammalian spinal cord under normal conditions and after different types of lesions, with special reference to motoneurons.
    Lindå H; Piehl F; Dagerlind A; Verge VM; Arvidsson U; Cullheim S; Risling M; Ulfhake B; Hökfelt T
    Exp Brain Res; 1992; 91(2):284-95. PubMed ID: 1333987
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Ultrastructural analysis of dynorphin B-immunoreactive cells and terminals in the superficial dorsal horn of the deafferented spinal cord of the rat.
    Cho HJ; Basbaum AI
    J Comp Neurol; 1989 Mar; 281(2):193-205. PubMed ID: 2565349
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Initial trajectories of sensory axons toward laminar targets in the developing mouse spinal cord.
    Ozaki S; Snider WD
    J Comp Neurol; 1997 Apr; 380(2):215-29. PubMed ID: 9100133
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The postnatal reorganization of primary afferent input and dorsal horn cell receptive fields in the rat spinal cord is an activity-dependent process.
    Beggs S; Torsney C; Drew LJ; Fitzgerald M
    Eur J Neurosci; 2002 Oct; 16(7):1249-58. PubMed ID: 12405985
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Long-term reorganization of respiratory pathways after partial cervical spinal cord injury.
    Vinit S; Darlot F; Stamegna JC; Sanchez P; Gauthier P; Kastner A
    Eur J Neurosci; 2008 Feb; 27(4):897-908. PubMed ID: 18279359
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Myelin-axon relationships in the rat phrenic nerve: longitudinal variation and lateral asymmetry.
    Fraher JP
    J Comp Neurol; 1992 Sep; 323(4):551-7. PubMed ID: 1430322
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Spinal afferents to lamina IX of the cervical enlargement in the rat studied by the retrograde transport of horseradish peroxidase.
    Hiramatsu K
    Brain Res; 1984 Feb; 292(2):375-7. PubMed ID: 6692163
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Apoptosis of spinal interneurons induced by sciatic nerve axotomy in the neonatal rat is counteracted by nerve growth factor and ciliary neurotrophic factor.
    Oliveira AL; Risling M; Negro A; Langone F; Cullheim S
    J Comp Neurol; 2002 Jun; 447(4):381-93. PubMed ID: 11992523
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Morphology of single axons of tectospinal neurons in the upper cervical spinal cord.
    Muto N; Kakei S; Shinoda Y
    J Comp Neurol; 1996 Aug; 372(1):9-26. PubMed ID: 8841918
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Regeneration of adult dorsal root axons into transplants of embryonic spinal cord.
    Tessler A; Himes BT; Houle J; Reier PJ
    J Comp Neurol; 1988 Apr; 270(4):537-48. PubMed ID: 3259590
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Morphology of central terminations of intra-axonally stained, large, myelinated primary afferent fibers from facial skin in the rat.
    Hayashi H
    J Comp Neurol; 1985 Jul; 237(2):195-215. PubMed ID: 2993374
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The somatotopic organization of primary afferent terminals in the superficial laminae of the dorsal horn of the rat spinal cord.
    Swett JE; Woolf CJ
    J Comp Neurol; 1985 Jan; 231(1):66-77. PubMed ID: 3968229
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Peripheral nerve injury induces reorganization of galanin-containing afferents in the superficial dorsal horn of monkey spinal cord.
    Wang LH; Lu YJ; Bao L; Zhang X
    Eur J Neurosci; 2007 Feb; 25(4):1087-96. PubMed ID: 17331205
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Transganglionic transport of choleragenoid by capsaicin-sensitive C-fibre afferents to the substantia gelatinosa of the spinal dorsal horn after peripheral nerve section.
    Sántha P; Jancsó G
    Neuroscience; 2003; 116(3):621-7. PubMed ID: 12573705
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Expression of L1 decreases during postnatal development of rat spinal cord.
    Akopians A; Runyan SA; Phelps PE
    J Comp Neurol; 2003 Dec; 467(3):375-88. PubMed ID: 14608600
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Increased numbers of thoracic dorsal root axons in rats given antibodies to nerve growth factor.
    Hulsebosch CE; Coggeshall RE; Perez-Polo JR
    Science; 1984 Aug; 225(4661):525-6. PubMed ID: 6740324
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Structural and functional identification of two distinct inspiratory neuronal populations at the level of the phrenic nucleus in the rat cervical spinal cord.
    Shinozaki Y; Yokota S; Miwakeichi F; Pokorski M; Aoyama R; Fukuda K; Yoshida H; Toyama Y; Nakamura M; Okada Y
    Brain Struct Funct; 2019 Jan; 224(1):57-72. PubMed ID: 30251026
    [TBL] [Abstract][Full Text] [Related]  

  • 78. GAP-43 expression in the developing rat lumbar spinal cord.
    Fitzgerald M; Reynolds ML; Benowitz LI
    Neuroscience; 1991; 41(1):187-99. PubMed ID: 1829142
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Cues intrinsic to the spinal cord determine the pattern and timing of primary afferent growth.
    Redmond L; Xie H; Ziskind-Conhaim L; Hockfield S
    Dev Biol; 1997 Feb; 182(2):205-18. PubMed ID: 9070322
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Morphological and physiological studies of development of the monosynaptic reflex pathway in the rat lumbar spinal cord.
    Kudo N; Yamada T
    J Physiol; 1987 Aug; 389():441-59. PubMed ID: 2824763
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.