These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 10592339)

  • 1. Long-term neural recording characteristics of wire microelectrode arrays implanted in cerebral cortex.
    Williams JC; Rennaker RL; Kipke DR
    Brain Res Brain Res Protoc; 1999 Dec; 4(3):303-13. PubMed ID: 10592339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compact movable microwire array for long-term chronic unit recording in cerebral cortex of primates.
    Jackson A; Fetz EE
    J Neurophysiol; 2007 Nov; 98(5):3109-18. PubMed ID: 17855584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex.
    Kipke DR; Vetter RJ; Williams JC; Hetke JF
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):151-5. PubMed ID: 12899260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An economical multi-channel cortical electrode array for extended periods of recording during behavior.
    Rennaker RL; Ruyle AM; Street SE; Sloan AM
    J Neurosci Methods; 2005 Mar; 142(1):97-105. PubMed ID: 15652622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bundled microwire array for long-term chronic single-unit recording in deep brain regions of behaving rats.
    Tseng WT; Yen CT; Tsai ML
    J Neurosci Methods; 2011 Oct; 201(2):368-76. PubMed ID: 21889539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex.
    Vetter RJ; Williams JC; Hetke JF; Nunamaker EA; Kipke DR
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):896-904. PubMed ID: 15188856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophysiological mapping of cat primary auditory cortex with multielectrode arrays.
    Kim SJ; Manyam SC; Warren DJ; Normann RA
    Ann Biomed Eng; 2006 Feb; 34(2):300-9. PubMed ID: 16496084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film.
    Ludwig KA; Uram JD; Yang J; Martin DC; Kipke DR
    J Neural Eng; 2006 Mar; 3(1):59-70. PubMed ID: 16510943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing.
    Prasad A; Sanchez JC
    J Neural Eng; 2012 Apr; 9(2):026028. PubMed ID: 22442134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unit activity, evoked potentials and slow waves in the rat hippocampus and olfactory bulb recorded with a 24-channel microelectrode.
    Kuperstein M; Eichenbaum H
    Neuroscience; 1985 Jul; 15(3):703-12. PubMed ID: 4069353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants.
    Prasad A; Xue QS; Sankar V; Nishida T; Shaw G; Streit WJ; Sanchez JC
    J Neural Eng; 2012 Oct; 9(5):056015. PubMed ID: 23010756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronically recording with a multi-electrode array device in the auditory cortex of an awake ferret.
    Dobbins HD; Marvit P; Ji Y; Depireux DA
    J Neurosci Methods; 2007 Mar; 161(1):101-11. PubMed ID: 17134761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A technique to prevent dural adhesions to chronically implanted microelectrode arrays.
    Maynard EM; Fernandez E; Normann RA
    J Neurosci Methods; 2000 Apr; 97(2):93-101. PubMed ID: 10788663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Quality of neuronal signal registered in the monkey motor cortex with chronically implanted multiple microwires].
    Bondar' IV; Vasil'eva LN; Badakva AM; Miller NV; Zobova LN; Roshchin VIu
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2014; 64(1):101-12. PubMed ID: 25710068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semi-chronic laminar recordings in the brainstem of behaving marmoset monkeys.
    Pomberger T; Hage SR
    J Neurosci Methods; 2019 Jan; 311():186-192. PubMed ID: 30352210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transparent arrays of bilayer-nanomesh microelectrodes for simultaneous electrophysiology and two-photon imaging in the brain.
    Qiang Y; Artoni P; Seo KJ; Culaclii S; Hogan V; Zhao X; Zhong Y; Han X; Wang PM; Lo YK; Li Y; Patel HA; Huang Y; Sambangi A; Chu JSV; Liu W; Fagiolini M; Fang H
    Sci Adv; 2018 Sep; 4(9):eaat0626. PubMed ID: 30191176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ceramic-based multisite electrode arrays for chronic single-neuron recording.
    Moxon KA; Leiser SC; Gerhardt GA; Barbee KA; Chapin JK
    IEEE Trans Biomed Eng; 2004 Apr; 51(4):647-56. PubMed ID: 15072219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel high electrode count spike recording array using an 81,920 pixel transimpedance amplifier-based imaging chip.
    Johnson LJ; Cohen E; Ilg D; Klein R; Skeath P; Scribner DA
    J Neurosci Methods; 2012 Apr; 205(2):223-32. PubMed ID: 22266817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.