These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 10592380)

  • 1. A quantitative immunocytochemical approach to the analysis of type I cells in the cat carotid body.
    Major J; Dinger B; Stensaas LJ; Wang ZZ
    Biol Signals Recept; 1999; 8(6):375-81. PubMed ID: 10592380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in tyrosine hydroxylase and substance P immunoreactivity in the cat carotid body following chronic hypoxia and denervation.
    Wang ZZ; Dinger B; Fidone SJ; Stensaas LJ
    Neuroscience; 1998 Apr; 83(4):1273-81. PubMed ID: 9502265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The co-existence of biogenic amines and neuropeptides in the type I cells of the cat carotid body.
    Wang ZZ; Stensaas LJ; Dinger B; Fidone SJ
    Neuroscience; 1992; 47(2):473-80. PubMed ID: 1379355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Release of dopamine from carotid sinus nerve fibers innervating type I cells in the cat carotid body.
    Almaraz L; Wang ZZ; Stensaas LJ; Fidone SJ
    Biol Signals; 1993; 2(1):16-26. PubMed ID: 8102579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-existence of tyrosine hydroxylase and dopamine beta-hydroxylase immunoreactivity in glomus cells of the cat carotid body.
    Wang ZZ; Stensaas LJ; Dinger B; Fidone SJ
    J Auton Nerv Syst; 1991 Mar; 32(3):259-64. PubMed ID: 1709959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noradrenergic glomus cells in the carotid body: an autoradiographic and immunocytochemical study in the rabbit and rat.
    Verna A; Schamel A; Pequignot JM
    Adv Exp Med Biol; 1993; 337():93-100. PubMed ID: 8109437
    [No Abstract]   [Full Text] [Related]  

  • 7. Modulatory effects of histamine on cat carotid body chemoreception.
    Del Rio R; Moya EA; Koenig CS; Fujiwara K; Alcayaga J; Iturriaga R
    Respir Physiol Neurobiol; 2008 Dec; 164(3):401-10. PubMed ID: 18824142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substance P: a carotid body peptide.
    Cuello AC; McQueen DS
    Neurosci Lett; 1980 Apr; 17(1-2):215-9. PubMed ID: 6189008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression and immunolocalization of endothelin peptides and its receptors, ETA and ETB, in the carotid body exposed to chronic intermittent hypoxia.
    Rey S; Corthorn J; Chacón C; Iturriaga R
    J Histochem Cytochem; 2007 Feb; 55(2):167-74. PubMed ID: 17046837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypoxic redistribution of iron and calcium in the cat glomus cells.
    Pokorski M; Faff L; Di Giulio C
    Adv Exp Med Biol; 2012; 758():99-103. PubMed ID: 23080148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular identification and functional role of voltage-gated sodium channels in rat carotid body chemoreceptor cells. Regulation of expression by chronic hypoxia in vivo.
    Caceres AI; Obeso A; Gonzalez C; Rocher A
    J Neurochem; 2007 Jul; 102(1):231-45. PubMed ID: 17564680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the peptidergic innervation of the rat carotid body a month after the termination of chronic hypoxia.
    Kusakabe T; Hayashida Y; Matsuda H; Kawakami T; Takenaka T
    Adv Exp Med Biol; 2000; 475():793-9. PubMed ID: 10849722
    [No Abstract]   [Full Text] [Related]  

  • 13. Distribution of substance P-immunoreactive structures in the developing cat carotid body.
    Scheibner T; Read DJ; Sullivan CE
    Brain Res; 1988 Jun; 453(1-2):72-8. PubMed ID: 2456837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of NK-1 receptor null mice to assess the significance of substance P in the carotid body function.
    Rico AJ; Prieto-Lloret J; Donnelly DF; De Felipe C; Gonzalez C; Rigual R
    Adv Exp Med Biol; 2003; 536():327-36. PubMed ID: 14635685
    [No Abstract]   [Full Text] [Related]  

  • 15. Immunocytochemical and neurochemical aspects of sympathetic ganglion chemosensitivity.
    Dinger B; Wang ZZ; Chen J; Wang WJ; Hanson G; Stensaas LJ; Fidone SJ
    Adv Exp Med Biol; 1993; 337():25-30. PubMed ID: 7906484
    [No Abstract]   [Full Text] [Related]  

  • 16. Hypoxic modulation of the cholinergic system in the cat carotid glomus cell.
    Mendoza JA; Chang I; Shirahata M
    Adv Exp Med Biol; 2006; 580():275-80; discussion 351-9. PubMed ID: 16683732
    [No Abstract]   [Full Text] [Related]  

  • 17. Vesicular glutamate transporter 2-immunoreactive afferent nerve terminals in the carotid body of the rat.
    Yokoyama T; Nakamuta N; Kusakabe T; Yamamoto Y
    Cell Tissue Res; 2014 Oct; 358(1):271-5. PubMed ID: 24906290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic regulation of chemoreceptor development in DBA/2J and A/J strains of mice.
    Balbir A; Okumura M; Schofield B; Coram J; Tankersley CG; Fitzgerald RS; O'Donnell CP; Shirahata M
    Adv Exp Med Biol; 2006; 580():99-104; discussion 351-9. PubMed ID: 16683704
    [No Abstract]   [Full Text] [Related]  

  • 19. Role of substance P in neutral endopeptidase modulation of hypoxic response of the carotid body.
    Kumar GK; Yu RK; Overholt JL; Prabhakar NR
    Adv Exp Med Biol; 2000; 475():705-13. PubMed ID: 10849712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for histamine as a transmitter in rat carotid body sensor cells.
    Koerner P; Hesslinger C; Schaefermeyer A; Prinz C; Gratzl M
    J Neurochem; 2004 Oct; 91(2):493-500. PubMed ID: 15447682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.