BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 10593608)

  • 1. Kinetics of oxidation of serotonin by myeloperoxidase compounds I and II.
    Dunford HB; Hsuanyu Y
    Biochem Cell Biol; 1999; 77(5):449-57. PubMed ID: 10593608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of reaction of melatonin with human myeloperoxidase.
    Allegra M; Furtmüller PG; Regelsberger G; Turco-Liveri ML; Tesoriere L; Perretti M; Livrea MA; Obinger C
    Biochem Biophys Res Commun; 2001 Mar; 282(2):380-6. PubMed ID: 11401469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation of clozapine and ascorbate by myeloperoxidase.
    Hsuanyu Y; Dunford HB
    Arch Biochem Biophys; 1999 Aug; 368(2):413-20. PubMed ID: 10441395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of acetaminophen with myeloperoxidase intermediates: optimum stimulation of enzyme activity.
    Marquez LA; Dunford HB
    Arch Biochem Biophys; 1993 Sep; 305(2):414-20. PubMed ID: 8396889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of the oxidation of 3,5,3',5'-tetramethylbenzidine by myeloperoxidase determined by transient- and steady-state kinetics.
    Marquez LA; Dunford HB
    Biochemistry; 1997 Aug; 36(31):9349-55. PubMed ID: 9235977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of interaction of betanin and indicaxanthin with human myeloperoxidase and hypochlorous acid.
    Allegra M; Furtmüller PG; Jantschko W; Zederbauer M; Tesoriere L; Livrea MA; Obinger C
    Biochem Biophys Res Commun; 2005 Jul; 332(3):837-44. PubMed ID: 15913556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the covalent glutamic acid 242-heme linkage in the formation and reactivity of redox intermediates of human myeloperoxidase.
    Zederbauer M; Jantschko W; Neugschwandtner K; Jakopitsch C; Moguilevsky N; Obinger C; Furtmüller PG
    Biochemistry; 2005 May; 44(17):6482-91. PubMed ID: 15850382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral and kinetic studies of the oxidation of monosubstituted phenols and anilines by recombinant Synechocystis catalase-peroxidase compound I.
    Regelsberger G; Jakopitsch C; Engleder M; Rüker F; Peschek GA; Obinger C
    Biochemistry; 1999 Aug; 38(32):10480-8. PubMed ID: 10441144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction of ferrous lactoperoxidase with hydrogen peroxide and dioxygen: an anaerobic stopped-flow study.
    Jantschko W; Furtmüller PG; Zederbauer M; Neugschwandtner K; Jakopitsch C; Obinger C
    Arch Biochem Biophys; 2005 Feb; 434(1):51-9. PubMed ID: 15629108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of oxidation of tyrosine and dityrosine by myeloperoxidase compounds I and II. Implications for lipoprotein peroxidation studies.
    Marquez LA; Dunford HB
    J Biol Chem; 1995 Dec; 270(51):30434-40. PubMed ID: 8530471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of oxygen binding to ferrous myeloperoxidase.
    Jantschko W; Furtmüller PG; Zederbauer M; Jakopitsch C; Obinger C
    Arch Biochem Biophys; 2004 Jun; 426(1):91-7. PubMed ID: 15130787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic evidence for rapid oxidation of (-)-epicatechin by human myeloperoxidase.
    Spalteholz H; Furtmüller PG; Jakopitsch C; Obinger C; Schewe T; Sies H; Arnhold J
    Biochem Biophys Res Commun; 2008 Jul; 371(4):810-3. PubMed ID: 18466756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactions of superoxide with myeloperoxidase.
    Kettle AJ; Anderson RF; Hampton MB; Winterbourn CC
    Biochemistry; 2007 Apr; 46(16):4888-97. PubMed ID: 17381162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NO* release from MbFe(II)NO and HbFe(II)NO after oxidation by peroxynitrite.
    Herold S; Boccini F
    Inorg Chem; 2006 Aug; 45(17):6933-43. PubMed ID: 16903752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic studies on the reaction of compound II of myeloperoxidase with ascorbic acid. Role of ascorbic acid in myeloperoxidase function.
    Marquez LA; Dunford HB; Van Wart H
    J Biol Chem; 1990 Apr; 265(10):5666-70. PubMed ID: 2156823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic studies on the oxidation of nitrite by horseradish peroxidase and lactoperoxidase.
    Gebicka L
    Acta Biochim Pol; 1999; 46(4):919-27. PubMed ID: 10824860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peroxynitrite efficiently mediates the interconversion of redox intermediates of myeloperoxidase.
    Furtmüller PG; Jantschko W; Zederbauer M; Schwanninger M; Jakopitsch C; Herold S; Koppenol WH; Obinger C
    Biochem Biophys Res Commun; 2005 Nov; 337(3):944-54. PubMed ID: 16214107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NADPH as a co-substrate for studies of the chlorinating activity of myeloperoxidase.
    Auchère F; Capeillère-Blandin C
    Biochem J; 1999 Nov; 343 Pt 3(Pt 3):603-13. PubMed ID: 10527939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The reactivity of myeloperoxidase compound I formed with hypochlorous acid.
    Furtmüller PG; Burner U; Jantschko W; Regelsberger G; Obinger C
    Redox Rep; 2000; 5(4):173-8. PubMed ID: 10994870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploitation of the unusual thermodynamic properties of human myeloperoxidase in inhibitor design.
    Jantschko W; Furtmüller PG; Zederbauer M; Neugschwandtner K; Lehner I; Jakopitsch C; Arnhold J; Obinger C
    Biochem Pharmacol; 2005 Apr; 69(8):1149-57. PubMed ID: 15794935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.