These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 10593890)

  • 1. Does the triple helical domain of type I collagen encode molecular recognition and fiber assembly while telopeptides serve as catalytic domains? Effect of proteolytic cleavage on fibrillogenesis and on collagen-collagen interaction in fibers.
    Kuznetsova N; Leikin S
    J Biol Chem; 1999 Dec; 274(51):36083-8. PubMed ID: 10593890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collagen self-assembly in vitro. Differentiating specific telopeptide-dependent interactions using selective enzyme modification and the addition of free amino telopeptide.
    Helseth DL; Veis A
    J Biol Chem; 1981 Jul; 256(14):7118-28. PubMed ID: 7251588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Type I collagen N-telopeptides adopt an ordered structure when docked to their helix receptor during fibrillogenesis.
    Malone JP; George A; Veis A
    Proteins; 2004 Feb; 54(2):206-15. PubMed ID: 14696182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sugars and polyols inhibit fibrillogenesis of type I collagen by disrupting hydrogen-bonded water bridges between the helices.
    Kuznetsova N; Chi SL; Leikin S
    Biochemistry; 1998 Aug; 37(34):11888-95. PubMed ID: 9718312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the type I collagen molecule based on conformational energy computations: the triple-stranded helix and the N-terminal telopeptide.
    Vitagliano L; Némethy G; Zagari A; Scheraga HA
    J Mol Biol; 1995 Mar; 247(1):69-80. PubMed ID: 7897661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic Analysis of the Digestion of Bovine Type I Collagen Telopeptides with Porcine Pepsin.
    Qian J; Okada Y; Ogura T; Tanaka K; Hattori S; Ito S; Satoh J; Takita T; Yasukawa K
    J Food Sci; 2016 Jan; 81(1):C27-34. PubMed ID: 26661326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The self-assembly of a mini-fibril with axial periodicity from a designed collagen-mimetic triple helix.
    Kaur PJ; Strawn R; Bai H; Xu K; Ordas G; Matsui H; Xu Y
    J Biol Chem; 2015 Apr; 290(14):9251-61. PubMed ID: 25673694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aromatic interactions promote self-association of collagen triple-helical peptides to higher-order structures.
    Kar K; Ibrar S; Nanda V; Getz TM; Kunapuli SP; Brodsky B
    Biochemistry; 2009 Aug; 48(33):7959-68. PubMed ID: 19610672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterotrimeric type I collagen C-telopeptide conformation as docked to its helix receptor.
    Malone JP; Veis A
    Biochemistry; 2004 Dec; 43(49):15358-66. PubMed ID: 15581348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collagens as multidomain proteins.
    van der Rest M; Garrone R
    Biochimie; 1990; 72(6-7):473-84. PubMed ID: 2257280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Segregation of type I collagen homo- and heterotrimers in fibrils.
    Han S; McBride DJ; Losert W; Leikin S
    J Mol Biol; 2008 Oct; 383(1):122-32. PubMed ID: 18721810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revisiting the molecular structure of collagen.
    Okuyama K
    Connect Tissue Res; 2008; 49(5):299-310. PubMed ID: 18991083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone sialoprotein-collagen interaction promotes hydroxyapatite nucleation.
    Baht GS; Hunter GK; Goldberg HA
    Matrix Biol; 2008 Sep; 27(7):600-8. PubMed ID: 18620053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-layer-associated proteolytic cleavage of the telopeptides of type I collagen in fibroblast culture.
    Bateman JF; Pillow JJ; Mascara T; Medvedec S; Ramshaw JA; Cole WG
    Biochem J; 1987 Aug; 245(3):677-82. PubMed ID: 3311034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folding of collagen IV.
    Dölz R; Engel J; Kühn K
    Eur J Biochem; 1988 Dec; 178(2):357-66. PubMed ID: 2850175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon.
    Vogel KG; Paulsson M; Heinegård D
    Biochem J; 1984 Nov; 223(3):587-97. PubMed ID: 6439184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supramolecular assembly of collagen fibrils into collagen fiber in fish scales of red seabream, Pagrus major.
    Youn HS; Shin TJ
    J Struct Biol; 2009 Nov; 168(2):332-6. PubMed ID: 19666125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of the dominant non-enzymatic intermolecular cross-linking sites on fibrous collagen.
    Chiue H; Yamazoye T; Matsumura S
    Biochem Biophys Res Commun; 2015 Jun; 461(3):445-9. PubMed ID: 25892520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural crest cell interaction with type VI collagen is mediated by multiple cooperative binding sites within triple-helix and globular domains.
    Perris R; Kuo HJ; Glanville RW; Leibold S; Bronner-Fraser M
    Exp Cell Res; 1993 Nov; 209(1):103-17. PubMed ID: 8223995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model for type II collagen fibrils: distinctive D-band patterns in native and reconstituted fibrils compared with sequence data for helix and telopeptide domains.
    Ortolani F; Giordano M; Marchini M
    Biopolymers; 2000 Nov; 54(6):448-63. PubMed ID: 10951330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.