BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 10594033)

  • 1. The drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation.
    Smith ER; Pannuti A; Gu W; Steurnagel A; Cook RG; Allis CD; Lucchesi JC
    Mol Cell Biol; 2000 Jan; 20(1):312-8. PubMed ID: 10594033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting of MOF, a putative histone acetyl transferase, to the X chromosome of Drosophila melanogaster.
    Gu W; Szauter P; Lucchesi JC
    Dev Genet; 1998; 22(1):56-64. PubMed ID: 9499580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The roX genes encode redundant male-specific lethal transcripts required for targeting of the MSL complex.
    Meller VH; Rattner BP
    EMBO J; 2002 Mar; 21(5):1084-91. PubMed ID: 11867536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. roX RNAs are required for increased expression of X-linked genes in Drosophila melanogaster males.
    Deng X; Meller VH
    Genetics; 2006 Dec; 174(4):1859-66. PubMed ID: 17028315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autoregulation of the Drosophila Noncoding roX1 RNA Gene.
    Lim CK; Kelley RL
    PLoS Genet; 2012; 8(3):e1002564. PubMed ID: 22438819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new strategy for isolating genes controlling dosage compensation in Drosophila using a simple epigenetic mosaic eye phenotype.
    Prabhakaran M; Kelley RL
    BMC Biol; 2010 Jun; 8():80. PubMed ID: 20537125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence that MSL-mediated dosage compensation in Drosophila begins at blastoderm.
    Franke A; Dernburg A; Bashaw GJ; Baker BS
    Development; 1996 Sep; 122(9):2751-60. PubMed ID: 8787749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sex-biased transcription enhancement by a 5' tethered Gal4-MOF histone acetyltransferase fusion protein in Drosophila.
    Schiemann AH; Li F; Weake VM; Belikoff EJ; Klemmer KC; Moore SA; Scott MJ
    BMC Mol Biol; 2010 Nov; 11():80. PubMed ID: 21062452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigenetic spreading of the Drosophila dosage compensation complex from roX RNA genes into flanking chromatin.
    Kelley RL; Meller VH; Gordadze PR; Roman G; Davis RL; Kuroda MI
    Cell; 1999 Aug; 98(4):513-22. PubMed ID: 10481915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ordered assembly of roX RNAs into MSL complexes on the dosage-compensated X chromosome in Drosophila.
    Meller VH; Gordadze PR; Park Y; Chu X; Stuckenholz C; Kelley RL; Kuroda MI
    Curr Biol; 2000 Feb; 10(3):136-43. PubMed ID: 10679323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imprinting of the Y chromosome influences dosage compensation in roX1 roX2 Drosophila melanogaster.
    Menon DU; Meller VH
    Genetics; 2009 Nov; 183(3):811-20. PubMed ID: 19704014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MOF-regulated acetylation of MSL-3 in the Drosophila dosage compensation complex.
    Buscaino A; Köcher T; Kind JH; Holz H; Taipale M; Wagner K; Wilm M; Akhtar A
    Mol Cell; 2003 May; 11(5):1265-77. PubMed ID: 12769850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Male-specific lethal 2, a dosage compensation gene of Drosophila, undergoes sex-specific regulation and encodes a protein with a RING finger and a metallothionein-like cysteine cluster.
    Zhou S; Yang Y; Scott MJ; Pannuti A; Fehr KC; Eisen A; Koonin EV; Fouts DL; Wrightsman R; Manning JE
    EMBO J; 1995 Jun; 14(12):2884-95. PubMed ID: 7796814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The non-dosage compensated Lsp1alpha gene of Drosophila melanogaster escapes acetylation by MOF in larval fat body nuclei, but is flanked by two dosage compensated genes.
    Weake VM; Scott MJ
    BMC Mol Biol; 2007 May; 8():35. PubMed ID: 17511883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association and spreading of the Drosophila dosage compensation complex from a discrete roX1 chromatin entry site.
    Kageyama Y; Mengus G; Gilfillan G; Kennedy HG; Stuckenholz C; Kelley RL; Becker PB; Kuroda MI
    EMBO J; 2001 May; 20(9):2236-45. PubMed ID: 11331589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dosage compensation and chromatin structure in Drosophila.
    Bashaw GJ; Baker BS
    Curr Opin Genet Dev; 1996 Aug; 6(4):496-501. PubMed ID: 8791531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Drosophila roX1 RNA gene can overcome silent chromatin by recruiting the male-specific lethal dosage compensation complex.
    Kelley RL; Kuroda MI
    Genetics; 2003 Jun; 164(2):565-74. PubMed ID: 12807777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence-specific targeting of dosage compensation in Drosophila favors an active chromatin context.
    Alekseyenko AA; Ho JW; Peng S; Gelbart M; Tolstorukov MY; Plachetka A; Kharchenko PV; Jung YL; Gorchakov AA; Larschan E; Gu T; Minoda A; Riddle NC; Schwartz YB; Elgin SC; Karpen GH; Pirrotta V; Kuroda MI; Park PJ
    PLoS Genet; 2012; 8(4):e1002646. PubMed ID: 22570616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A plasmid model system shows that Drosophila dosage compensation depends on the global acetylation of histone H4 at lysine 16 and is not affected by depletion of common transcription elongation chromatin marks.
    Yokoyama R; Pannuti A; Ling H; Smith ER; Lucchesi JC
    Mol Cell Biol; 2007 Nov; 27(22):7865-70. PubMed ID: 17875941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recruitment of the male-specific lethal (MSL) dosage compensation complex to an autosomally integrated roX chromatin entry site correlates with an increased expression of an adjacent reporter gene in male Drosophila.
    Henry RA; Tews B; Li X; Scott MJ
    J Biol Chem; 2001 Aug; 276(34):31953-8. PubMed ID: 11402038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.