These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 10594148)

  • 1. Chromium tolerant yeast strains isolated from industrial effluents and their possible use in environmental clean-up.
    Dar N; Shakoori AR
    Bull Environ Contam Toxicol; 1999 Dec; 63(6):744-50. PubMed ID: 10594148
    [No Abstract]   [Full Text] [Related]  

  • 2. Modulation of chromium(VI) toxicity by organic and inorganic sulfur species in yeasts from industrial wastes.
    Pepi M; Baldi F
    Biometals; 1992; 5(3):179-85. PubMed ID: 1421967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromium tolerance and reduction potential of a Bacillus sp.ev3 isolated from metal contaminated wastewater.
    Rehman A; Zahoor A; Muneer B; Hasnain S
    Bull Environ Contam Toxicol; 2008 Jul; 81(1):25-9. PubMed ID: 18498008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromium(VI)-resistant yeast isolated from a sewage treatment plant receiving tannery wastes.
    Baldi F; Vaughan AM; Olson GJ
    Appl Environ Microbiol; 1990 Apr; 56(4):913-8. PubMed ID: 2339879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of chromium (VI) on growth physiology and sorptional capacity of yeast].
    Lozovaia OG; Kasatkina TP; Podgorskiĭ VS
    Mikrobiol Z; 2004; 66(3):43-50. PubMed ID: 15456217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromium-tolerant bacteria isolated from industrial effluents and their use in detoxication of hexavalent chromium.
    Shakoori AR; Tahseen S; Haq RU
    Folia Microbiol (Praha); 1999; 44(1):50-4. PubMed ID: 10489694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quality of effluents from Hattar Industrial Estate.
    Sial RA; Chaudhary MF; Abbas ST; Latif MI; Khan AG
    J Zhejiang Univ Sci B; 2006 Dec; 7(12):974-80. PubMed ID: 17111466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioabsorption of chromium from retan chrome liquor by cyanobacteria.
    Pandi M; Shashirekha V; Swamy M
    Microbiol Res; 2009; 164(4):420-8. PubMed ID: 17499983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Environmental disaster in Taranto, southern Italy: the contribution of epidemiology].
    Michelozzi P
    Epidemiol Prev; 2012 Sep; 36(5):231-3. PubMed ID: 23139107
    [No Abstract]   [Full Text] [Related]  

  • 10. Isolation and process parameter optimization of Aspergillus sp. for removal of chromium from tannery effluent.
    Srivastava S; Thakur IS
    Bioresour Technol; 2006 Jul; 97(10):1167-73. PubMed ID: 16023341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Adsorbing capability of chromium-galvanized waste water by yeast-activated sludge].
    Yin H; Ye JS; Peng H; Zhang N; Xie DP
    Huan Jing Ke Xue; 2004 May; 25(3):61-4. PubMed ID: 15327255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel chromium tolerant microorganisms: isolation, characterization and their biosorption capacity.
    Mishra S; Doble M
    Ecotoxicol Environ Saf; 2008 Nov; 71(3):874-9. PubMed ID: 18272220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of PCDD and PCDF in the thermal treatment of footwear leather wastes.
    Godinho M; Marcilio NR; Masotti L; Martins CB; Ritter DE; Wenzel BM
    J Hazard Mater; 2009 Aug; 167(1-3):1100-5. PubMed ID: 19303706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pseudomonad strains exhibiting high level Cr(VI) resistance and Cr(VI) detoxification potential.
    Sultan S; Hasnain S
    Bull Environ Contam Toxicol; 2003 Sep; 71(3):473-80. PubMed ID: 14567572
    [No Abstract]   [Full Text] [Related]  

  • 15. Chromium recovery from tannery sludge with saponin and oxidative remediation.
    Kiliç E; Font J; Puig R; Colak S; Celik D
    J Hazard Mater; 2011 Jan; 185(1):456-62. PubMed ID: 20940084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromium accumulation by living yeast at various environmental conditions.
    Kaszycki P; Fedorovych D; Ksheminska H; Babyak L; Wójcik D; Koloczek H
    Microbiol Res; 2004; 159(1):11-7. PubMed ID: 15160602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review.
    Dhal B; Thatoi HN; Das NN; Pandey BD
    J Hazard Mater; 2013 Apr; 250-251():272-91. PubMed ID: 23467183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of consortia of microorganisms for efficient removal of hexavalent chromium from industrial wastewater.
    Muneer B; Rehman A; Shakoori FR; Shakoori AR
    Bull Environ Contam Toxicol; 2009 May; 82(5):597-600. PubMed ID: 19183818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyrolysis of chromium rich tanning industrial wastes and utilization of carbonized wastes in metallurgical process.
    Tôrres Filho A; Lange LC; de Melo GCB; Praes GE
    Waste Manag; 2016 Feb; 48():448-456. PubMed ID: 26691602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speciation of Cr(VI) in environmental samples in the vicinity of the ferrochrome smelter.
    Sedumedi HN; Mandiwana KL; Ngobeni P; Panichev N
    J Hazard Mater; 2009 Dec; 172(2-3):1686-9. PubMed ID: 19716233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.