BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 10594218)

  • 1. Phototrophic biofilms on ancient Mayan buildings in Yucatan, Mexico.
    Ortega-Morales O; Guezennec J; Hernández-Duque G; Gaylarde CC; Gaylarde PM
    Curr Microbiol; 2000 Feb; 40(2):81-5. PubMed ID: 10594218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Algal and cyanobacterial biofilms on calcareous historic buildings.
    Crispim CA; Gaylarde PM; Gaylarde CC
    Curr Microbiol; 2003 Feb; 46(2):79-82. PubMed ID: 12520359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyanobacteria-containing biofilms from a Mayan monument in Palenque, Mexico.
    Ramirez M; Hernandez-Marine M; Novelo E; Roldan M
    Biofouling; 2010 May; 26(4):399-409. PubMed ID: 20182932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyanobacterial diversity and ecology on historic monuments in Latin America.
    Ortega-Morales BO
    Rev Latinoam Microbiol; 2006; 48(2):188-95. PubMed ID: 17578091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epilithic and endolithic microorganisms and deterioration on stone church facades subject to urban pollution in a sub-tropical climate.
    Gaylarde C; Baptista-Neto JA; Ogawa A; Kowalski M; Celikkol-Aydin S; Beech I
    Biofouling; 2017 Feb; 33(2):113-127. PubMed ID: 28054493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of biofilms in the sedimentology of actively forming gypsum deposits at Guerrero Negro, Mexico.
    Vogel MB; Des Marais DJ; Turk KA; Parenteau MN; Jahnke LL; Kubo MD
    Astrobiology; 2009 Nov; 9(9):875-93. PubMed ID: 19968464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversity of an aerial phototrophic coating of historic buildings in the former Auschwitz II-Birkenau concentration camp.
    Nowicka-Krawczyk P; Żelazna-Wieczorek J; Otlewska A; Koziróg A; Rajkowska K; Piotrowska M; Gutarowska B; Żydzik-Białek A
    Sci Total Environ; 2014 Sep; 493():116-23. PubMed ID: 24937497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial deterioration of stone monuments--an updated overview.
    Scheerer S; Ortega-Morales O; Gaylarde C
    Adv Appl Microbiol; 2009; 66():97-139. PubMed ID: 19203650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics and role of the exocellular polysaccharides produced by five cyanobacteria isolated from phototrophic biofilms growing on stone monuments.
    Rossi F; Micheletti E; Bruno L; Adhikary SP; Albertano P; Philippis RD
    Biofouling; 2012; 28(2):215-24. PubMed ID: 22352355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biogenic black crusts on buildings in unpolluted environments.
    Gaylarde CC; Ortega-Morales BO; Bartolo-Pérez P
    Curr Microbiol; 2007 Feb; 54(2):162-6. PubMed ID: 17211538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biofilm formation by algae as a mechanism for surviving on mine tailings.
    García-Meza JV; Barrangue C; Admiraal W
    Environ Toxicol Chem; 2005 Mar; 24(3):573-81. PubMed ID: 15779756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioweathering Potential of Cultivable Fungi Associated with Semi-Arid Surface Microhabitats of Mayan Buildings.
    Ortega-Morales BO; Narváez-Zapata J; Reyes-Estebanez M; Quintana P; De la Rosa-García Sdel C; Bullen H; Gómez-Cornelio S; Chan-Bacab MJ
    Front Microbiol; 2016; 7():201. PubMed ID: 26941725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofilms in caves: easy method for the assessment of dominant phototrophic groups/taxa in situ.
    Popović S; Krizmanić J; Vidaković D; Karadžić V; Milovanović Ž; Pećić M; Subakov Simić G
    Environ Monit Assess; 2020 Oct; 192(11):720. PubMed ID: 33089398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The spatial organization and microbial community structure of an epilithic biofilm.
    Cutler NA; Chaput DL; Oliver AE; Viles HA
    FEMS Microbiol Ecol; 2015 Mar; 91(3):. PubMed ID: 25764559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laboratory-induced endolithic growth in calcarenites: biodeteriorating potential assessment.
    Miller AZ; Rogerio-Candelera MA; Laiz L; Wierzchos J; Ascaso C; Sequeira Braga MA; Hernández-Mariné M; Maurício A; Dionísio A; Macedo MF; Saiz-Jimenez C
    Microb Ecol; 2010 Jul; 60(1):55-68. PubMed ID: 20440490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subaerial biofilms on granitic historic buildings: microbial diversity and development of phototrophic multi-species cultures.
    Vázquez-Nion D; Rodríguez-Castro J; López-Rodríguez MC; Fernández-Silva I; Prieto B
    Biofouling; 2016 Jul; 32(6):657-69. PubMed ID: 27192622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Characteristics of Soil Microbial Community Structure in the Rhizospheric Soil of
    Zuo YL; He XL; Wang SJ; Zhao LL
    Huan Jing Ke Xue; 2016 Jul; 37(7):2705-2713. PubMed ID: 29964482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of microorganisms involved in deterioration of an archaeological site by silver nanoparticles produced by a green synthesis method.
    Carrillo-González R; Martínez-Gómez MA; González-Chávez MDCA; Mendoza Hernández JC
    Sci Total Environ; 2016 Sep; 565():872-881. PubMed ID: 27015961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into chemotaxonomic composition and carbon cycling of phototrophic communities in an artesian sulfur-rich spring (Zodletone, Oklahoma, USA), a possible analog for ancient microbial mat systems.
    Bühring SI; Sievert SM; Jonkers HM; Ertefai T; Elshahed MS; Krumholz LR; Hinrichs KU
    Geobiology; 2011 Mar; 9(2):166-79. PubMed ID: 21244620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial community structure in biofilms and water of a drinking water distribution system determined by lipid biomarkers.
    Keinänen MM; Martikainen PJ; Korhonen LK; Suutari MH
    Water Sci Technol; 2003; 47(5):143-7. PubMed ID: 12701920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.