These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Algal and cyanobacterial biofilms on calcareous historic buildings. Crispim CA; Gaylarde PM; Gaylarde CC Curr Microbiol; 2003 Feb; 46(2):79-82. PubMed ID: 12520359 [TBL] [Abstract][Full Text] [Related]
3. Cyanobacteria-containing biofilms from a Mayan monument in Palenque, Mexico. Ramirez M; Hernandez-Marine M; Novelo E; Roldan M Biofouling; 2010 May; 26(4):399-409. PubMed ID: 20182932 [TBL] [Abstract][Full Text] [Related]
4. Cyanobacterial diversity and ecology on historic monuments in Latin America. Ortega-Morales BO Rev Latinoam Microbiol; 2006; 48(2):188-95. PubMed ID: 17578091 [TBL] [Abstract][Full Text] [Related]
5. Epilithic and endolithic microorganisms and deterioration on stone church facades subject to urban pollution in a sub-tropical climate. Gaylarde C; Baptista-Neto JA; Ogawa A; Kowalski M; Celikkol-Aydin S; Beech I Biofouling; 2017 Feb; 33(2):113-127. PubMed ID: 28054493 [TBL] [Abstract][Full Text] [Related]
6. The role of biofilms in the sedimentology of actively forming gypsum deposits at Guerrero Negro, Mexico. Vogel MB; Des Marais DJ; Turk KA; Parenteau MN; Jahnke LL; Kubo MD Astrobiology; 2009 Nov; 9(9):875-93. PubMed ID: 19968464 [TBL] [Abstract][Full Text] [Related]
7. Diversity of an aerial phototrophic coating of historic buildings in the former Auschwitz II-Birkenau concentration camp. Nowicka-Krawczyk P; Żelazna-Wieczorek J; Otlewska A; Koziróg A; Rajkowska K; Piotrowska M; Gutarowska B; Żydzik-Białek A Sci Total Environ; 2014 Sep; 493():116-23. PubMed ID: 24937497 [TBL] [Abstract][Full Text] [Related]
8. Microbial deterioration of stone monuments--an updated overview. Scheerer S; Ortega-Morales O; Gaylarde C Adv Appl Microbiol; 2009; 66():97-139. PubMed ID: 19203650 [TBL] [Abstract][Full Text] [Related]
9. Characteristics and role of the exocellular polysaccharides produced by five cyanobacteria isolated from phototrophic biofilms growing on stone monuments. Rossi F; Micheletti E; Bruno L; Adhikary SP; Albertano P; Philippis RD Biofouling; 2012; 28(2):215-24. PubMed ID: 22352355 [TBL] [Abstract][Full Text] [Related]
10. Biogenic black crusts on buildings in unpolluted environments. Gaylarde CC; Ortega-Morales BO; Bartolo-Pérez P Curr Microbiol; 2007 Feb; 54(2):162-6. PubMed ID: 17211538 [TBL] [Abstract][Full Text] [Related]
11. Biofilm formation by algae as a mechanism for surviving on mine tailings. García-Meza JV; Barrangue C; Admiraal W Environ Toxicol Chem; 2005 Mar; 24(3):573-81. PubMed ID: 15779756 [TBL] [Abstract][Full Text] [Related]
12. Biofilms in caves: easy method for the assessment of dominant phototrophic groups/taxa in situ. Popović S; Krizmanić J; Vidaković D; Karadžić V; Milovanović Ž; Pećić M; Subakov Simić G Environ Monit Assess; 2020 Oct; 192(11):720. PubMed ID: 33089398 [TBL] [Abstract][Full Text] [Related]
13. The spatial organization and microbial community structure of an epilithic biofilm. Cutler NA; Chaput DL; Oliver AE; Viles HA FEMS Microbiol Ecol; 2015 Mar; 91(3):. PubMed ID: 25764559 [TBL] [Abstract][Full Text] [Related]
15. Subaerial biofilms on granitic historic buildings: microbial diversity and development of phototrophic multi-species cultures. Vázquez-Nion D; Rodríguez-Castro J; López-Rodríguez MC; Fernández-Silva I; Prieto B Biofouling; 2016 Jul; 32(6):657-69. PubMed ID: 27192622 [TBL] [Abstract][Full Text] [Related]
16. [Characteristics of Soil Microbial Community Structure in the Rhizospheric Soil of Zuo YL; He XL; Wang SJ; Zhao LL Huan Jing Ke Xue; 2016 Jul; 37(7):2705-2713. PubMed ID: 29964482 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of microorganisms involved in deterioration of an archaeological site by silver nanoparticles produced by a green synthesis method. Carrillo-González R; Martínez-Gómez MA; González-Chávez MDCA; Mendoza Hernández JC Sci Total Environ; 2016 Sep; 565():872-881. PubMed ID: 27015961 [TBL] [Abstract][Full Text] [Related]
18. Bioweathering Potential of Cultivable Fungi Associated with Semi-Arid Surface Microhabitats of Mayan Buildings. Ortega-Morales BO; Narváez-Zapata J; Reyes-Estebanez M; Quintana P; De la Rosa-García Sdel C; Bullen H; Gómez-Cornelio S; Chan-Bacab MJ Front Microbiol; 2016; 7():201. PubMed ID: 26941725 [TBL] [Abstract][Full Text] [Related]
19. Insights into chemotaxonomic composition and carbon cycling of phototrophic communities in an artesian sulfur-rich spring (Zodletone, Oklahoma, USA), a possible analog for ancient microbial mat systems. Bühring SI; Sievert SM; Jonkers HM; Ertefai T; Elshahed MS; Krumholz LR; Hinrichs KU Geobiology; 2011 Mar; 9(2):166-79. PubMed ID: 21244620 [TBL] [Abstract][Full Text] [Related]
20. Microbial community structure in biofilms and water of a drinking water distribution system determined by lipid biomarkers. Keinänen MM; Martikainen PJ; Korhonen LK; Suutari MH Water Sci Technol; 2003; 47(5):143-7. PubMed ID: 12701920 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]