BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 10594341)

  • 21. Captopril produces endothelium-dependent relaxation of dog isolated renal arteries. Potential role of bradykinin.
    Malomvölgyi B; Koltai MZ; Hadházy P; Pogátsa G; Magyar K
    Arch Int Pharmacodyn Ther; 1995; 330(1):39-52. PubMed ID: 8849309
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Angiotensin II type 2 receptor-mediated and nitric oxide-dependent renal vasodilator response to compound 21 unmasked by angiotensin-converting enzyme inhibition in spontaneously hypertensive rats in vivo.
    Brouwers S; Smolders I; Massie A; Dupont AG
    Hypertension; 2013 Nov; 62(5):920-6. PubMed ID: 24041944
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Demonstration of extrapulmonary activity of angiotensin converting enzyme in intact tissue preparations.
    Lembeck F; Griesbacher T; Eckhardt M
    Br J Pharmacol; 1990 May; 100(1):49-54. PubMed ID: 2164861
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Angiotensin-(1-7) Selectively Induces Relaxation and Modulates Endothelium-Dependent Dilation in Mesenteric Arteries of Salt-Fed Rats.
    Raffai G; Lombard JH
    J Vasc Res; 2016; 53(1-2):105-118. PubMed ID: 27676088
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new experimental approach in endothelium-dependent pharmacological investigations on isolated porcine coronary arteries mounted for impedance planimetry.
    Tankó LB; Mikkelsen EO; Simonsen U
    Br J Pharmacol; 1999 Sep; 128(1):165-73. PubMed ID: 10498848
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Converting enzyme inhibitors and the role of the sulfhydryl group in the potentiation of exo- and endogenous nitrovasodilators.
    van Gilst WH; de Graeff PA; de Leeuw MJ; Scholtens E; Wesseling H
    J Cardiovasc Pharmacol; 1991 Sep; 18(3):429-36. PubMed ID: 1720843
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simvastatin acts synergistically with ACE inhibitors or amlodipine to decrease oxygen consumption in rat hearts.
    Mital S; Magneson A; Loke KE; Liao J; Forfia PR; Hintze TH
    J Cardiovasc Pharmacol; 2000 Aug; 36(2):248-54. PubMed ID: 10942168
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Converting enzyme inhibitor-stimulated formation of nitric oxide and prostacyclin in endothelial cells from bovine aorta is mediated by endothelium-derived bradykinin.
    Wiemer G; Schölkens BA; Becker RH
    Agents Actions Suppl; 1992; 38 ( Pt 3)():196-200. PubMed ID: 1334350
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Endothelial angiotensin-converting enzyme and neutral endopeptidase in isolated human umbilical vein: an effective bradykinin inactivation pathway.
    Nowak W; Errasti AE; Armesto AR; Santín Velazque NL; Rothlin RP
    Eur J Pharmacol; 2011 Sep; 667(1-3):271-7. PubMed ID: 21651905
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bradykinin B2 receptor-mediated chronotropic effect of bradykinin in isolated guinea pig atria.
    Tesfamariam B; Allen GT; Powell JR
    Eur J Pharmacol; 1995 Jul; 281(1):17-20. PubMed ID: 8566111
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Angiotensin-(1-7) causes endothelium-dependent relaxation in canine middle cerebral artery.
    Feterik K; Smith L; Katusic ZS
    Brain Res; 2000 Aug; 873(1):75-82. PubMed ID: 10915812
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinins or nitric oxide, or both, are involved in the antitrophic effects of angiotensin converting enzyme inhibitors on diabetes-associated mesenteric vascular hypertrophy in the rat.
    Rumble JR; Komers R; Cooper ME
    J Hypertens; 1996 May; 14(5):601-7. PubMed ID: 8762203
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of the converting enzyme inhibitor cilazaprilat on endothelium-dependent responses.
    Mombouli JV; Nephtali M; Vanhoutte PM
    Hypertension; 1991 Oct; 18(4 Suppl):II22-9. PubMed ID: 1916998
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of converting enzyme inhibition on endothelial bradykinin metabolism and endothelium-dependent vascular relaxation.
    Bossaller C; Auch-Schwelk W; Gräfe M; Graf K; Baumgarten C; Fleck E
    Agents Actions Suppl; 1992; 38 ( Pt 3)():171-7. PubMed ID: 1334349
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Local action of the renin angiotensin system in the porcine ophthalmic circulation: effects of ACE-inhibitors and angiotensin receptor antagonists.
    Meyer P; Flammer J; Lüscher TF
    Invest Ophthalmol Vis Sci; 1995 Mar; 36(3):555-62. PubMed ID: 7890486
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ACE inhibition enhances bradykinin relaxations through nitric oxide and B1 receptor activation in bovine coronary arteries.
    Gauthier KM; Cepura CJ; Campbell WB
    Biol Chem; 2013 Sep; 394(9):1205-12. PubMed ID: 23729620
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of endothelium-dependent relaxations resistant to nitro-L-arginine in the porcine coronary artery.
    Nagao T; Vanhoutte PM
    Br J Pharmacol; 1992 Dec; 107(4):1102-7. PubMed ID: 1467832
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Angiotensin 1-7 induces bradykinin-mediated relaxation in porcine coronary artery.
    Gorelik G; Carbini LA; Scicli AG
    J Pharmacol Exp Ther; 1998 Jul; 286(1):403-10. PubMed ID: 9655885
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Endothelium-dependent relaxation and hyperpolarization evoked by bradykinin in canine coronary arteries: enhancement by exercise-training.
    Mombouli JV; Nakashima M; Hamra M; Vanhoutte PM
    Br J Pharmacol; 1996 Feb; 117(3):413-418. PubMed ID: 8821528
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of the angiotensin converting enzyme by perindoprilat and release of nitric oxide.
    Desta B; Vanhoutte PM; Boulanger CM
    Am J Hypertens; 1995 May; 8(5 Pt 2):1S-6S. PubMed ID: 7544135
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.