These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 10595561)
1. Common protein architecture and binding sites in proteases utilizing a Ser/Lys dyad mechanism. Paetzel M; Strynadka NC Protein Sci; 1999 Nov; 8(11):2533-6. PubMed ID: 10595561 [TBL] [Abstract][Full Text] [Related]
2. Crystal structure of a novel viral protease with a serine/lysine catalytic dyad mechanism. Feldman AR; Lee J; Delmas B; Paetzel M J Mol Biol; 2006 May; 358(5):1378-89. PubMed ID: 16584747 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of a bacterial signal Peptide peptidase. Kim AC; Oliver DC; Paetzel M J Mol Biol; 2008 Feb; 376(2):352-66. PubMed ID: 18164727 [TBL] [Abstract][Full Text] [Related]
4. [Peptide hydrolases with catalytic dyad Ser-Lys. Similarity and distinctions of the active centers of ATP-dependent Lon proteases, LexA repressors, signal peptidases and C-terminal processing proteases]. Rotanova TV Vopr Med Khim; 2002; 48(6):541-52. PubMed ID: 12698553 [TBL] [Abstract][Full Text] [Related]
5. Crystallographic analysis of bacterial signal peptidase in ternary complex with arylomycin A2 and a beta-sultam inhibitor. Luo C; Roussel P; Dreier J; Page MG; Paetzel M Biochemistry; 2009 Sep; 48(38):8976-84. PubMed ID: 19655811 [TBL] [Abstract][Full Text] [Related]
6. Crystal structure of a bacterial signal peptidase in complex with a beta-lactam inhibitor. Paetzel M; Dalbey RE; Strynadka NC Nature; 1998 Nov; 396(6707):186-90. PubMed ID: 9823901 [TBL] [Abstract][Full Text] [Related]
7. Structural insights into the regulation of SOS mutagenesis. Gonzalez M; Frank EG; McDonald JP; Levine AS; Woodgate R Acta Biochim Pol; 1998; 45(1):163-72. PubMed ID: 9701508 [TBL] [Abstract][Full Text] [Related]
8. Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry. Wu Z; Yan N; Feng L; Oberstein A; Yan H; Baker RP; Gu L; Jeffrey PD; Urban S; Shi Y Nat Struct Mol Biol; 2006 Dec; 13(12):1084-91. PubMed ID: 17099694 [TBL] [Abstract][Full Text] [Related]
9. Development of an internally quenched fluorescent substrate for Escherichia coli leader peptidase. Zhong W; Benkovic SJ Anal Biochem; 1998 Jan; 255(1):66-73. PubMed ID: 9448843 [TBL] [Abstract][Full Text] [Related]
10. Structural basis for intramembrane proteolysis by rhomboid serine proteases. Ben-Shem A; Fass D; Bibi E Proc Natl Acad Sci U S A; 2007 Jan; 104(2):462-6. PubMed ID: 17190827 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of a bacterial signal peptidase apoenzyme: implications for signal peptide binding and the Ser-Lys dyad mechanism. Paetzel M; Dalbey RE; Strynadka NC J Biol Chem; 2002 Mar; 277(11):9512-9. PubMed ID: 11741964 [TBL] [Abstract][Full Text] [Related]
12. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments. Yang AS; Honig B J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778 [TBL] [Abstract][Full Text] [Related]
13. Type I signal peptidase: an overview. Tuteja R Arch Biochem Biophys; 2005 Sep; 441(2):107-11. PubMed ID: 16126156 [TBL] [Abstract][Full Text] [Related]
14. Lys, pro and trp are critical core amino acid residues recognized by FUM20, a monoclonal antibody against serine protease pan-fungal allergens. Lee LH; Tam MF; Chou H; Tai HY; Shen HD Int Arch Allergy Immunol; 2007; 143(3):194-200. PubMed ID: 17284929 [TBL] [Abstract][Full Text] [Related]
15. The effects of mutations in the carboxyl-terminal region on the catalytic activity of Escherichia coli signal peptidase I. Kim YT; Yoshida H; Kojima M; Kurita R; Nishii W; Muramatsu T; Ito H; Park SJ; Takahashi K J Biochem; 2008 Feb; 143(2):237-42. PubMed ID: 18032415 [TBL] [Abstract][Full Text] [Related]
16. Identification of arginine residues important for the activity of Escherichia coli signal peptidase I. Kim YT; Kurita R; Kojima M; Nishii W; Tanokura M; Muramatsu T; Ito H; Takahashi K Biol Chem; 2004 May; 385(5):381-8. PubMed ID: 15195997 [TBL] [Abstract][Full Text] [Related]
17. Escherichia coli signal peptide peptidase A is a serine-lysine protease with a lysine recruited to the nonconserved amino-terminal domain in the S49 protease family. Wang P; Shim E; Cravatt B; Jacobsen R; Schoeniger J; Kim AC; Paetzel M; Dalbey RE Biochemistry; 2008 Jun; 47(24):6361-9. PubMed ID: 18476724 [TBL] [Abstract][Full Text] [Related]
18. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. Kim YI; Levchenko I; Fraczkowska K; Woodruff RV; Sauer RT; Baker TA Nat Struct Biol; 2001 Mar; 8(3):230-3. PubMed ID: 11224567 [TBL] [Abstract][Full Text] [Related]
19. Compromise and accommodation in ecotin, a dimeric macromolecular inhibitor of serine proteases. Gillmor SA; Takeuchi T; Yang SQ; Craik CS; Fletterick RJ J Mol Biol; 2000 Jun; 299(4):993-1003. PubMed ID: 10843853 [TBL] [Abstract][Full Text] [Related]
20. Subunit-specific degradation of the UmuD/D' heterodimer by the ClpXP protease: the role of trans recognition in UmuD' stability. Gonzalez M; Rasulova F; Maurizi MR; Woodgate R EMBO J; 2000 Oct; 19(19):5251-8. PubMed ID: 11013227 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]