BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 10596211)

  • 1. Acousto-optical deflection-based laser beam scanning for fluorescence detection on multichannel electrophoretic microchips.
    Huang Z; Munro N; Hühmer AF; Landers JP
    Anal Chem; 1999 Dec; 71(23):5309-14. PubMed ID: 10596211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser-induced fluorescence detection on multichannel electrophoretic microchips using microprocessor-embedded acousto-optic laser beam scanning.
    Huang Z; Jin L; Sanders JC; Zheng Y; Dunsmoor C; Tian H; Landers JP
    IEEE Trans Biomed Eng; 2002 Aug; 49(8):859-66. PubMed ID: 12148825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acousto-optical deflection-based whole channel scanning for microchip isoelectric focusing with laser-induced fluorescence detection.
    Sanders JC; Huang Z; Landers JP
    Lab Chip; 2001 Dec; 1(2):167-72. PubMed ID: 15100880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acousto-optic laser-scanning cytometer.
    Burger D; Gershman R
    Cytometry; 1988 Mar; 9(2):101-10. PubMed ID: 3282838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting sensitive laser-induced fluorescence detection on electrophoretic microchips for executing rapid clinical diagnostics.
    Ferrance J; Landers JP
    Luminescence; 2001; 16(2):79-88. PubMed ID: 11312532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel analysis with optically gated sample introduction on a multichannel microchip.
    Xu H; Roddy TP; Lapos JA; Ewing AG
    Anal Chem; 2002 Nov; 74(21):5517-22. PubMed ID: 12433082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A spatio-temporally compensated acousto-optic scanner for two-photon microscopy providing large field of view.
    Kremer Y; Léger JF; Lapole R; Honnorat N; Candela Y; Dieudonné S; Bourdieu L
    Opt Express; 2008 Jul; 16(14):10066-76. PubMed ID: 18607414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beam shaping and high-speed, cylinder-lens-free beam guiding using acousto-optical deflectors without additional compensation optics.
    Bechtold P; Hohenstein R; Schmidt M
    Opt Express; 2013 Jun; 21(12):14627-35. PubMed ID: 23787650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Position of the prism in a dispersion-compensated acousto-optic deflector for multiphoton imaging.
    Bi K; Zeng S; Xue S; Sun J; Lv X; Li D; Luo Q
    Appl Opt; 2006 Nov; 45(33):8560-5. PubMed ID: 17086269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acousto-optic random-access laser scanning microscopy: fundamentals and applications to optical recording of neuronal activity.
    Saggau P; Bullen A; Patel SS
    Cell Mol Biol (Noisy-le-grand); 1998 Jul; 44(5):827-46. PubMed ID: 9764750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging electrophoretic gels with a scanning beam laser macroscope.
    Seto EK; Damaskinos S; Dixon AE; Diehl-Jones WL; Mandato CA
    Electrophoresis; 1995 Jun; 16(6):934-40. PubMed ID: 7498139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capillary electrophoresis of the collagen crosslinks HP and LP utilizing absorbance, wavelength-resolved laser-induced fluorescence and conventional fluorescence detection.
    Veraart JR; Kok SJ; te Koppele JM; Gooijer C; Lingeman H; Velthorst NH; Brinkman UA
    Biomed Chromatogr; 1998; 12(4):226-31. PubMed ID: 9667027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plastic microchip electrophoresis with analyte velocity modulation. Application to fluorescence background rejection.
    Wang SC; Morris MD
    Anal Chem; 2000 Apr; 72(7):1448-52. PubMed ID: 10763239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-the-fly frequency-domain fluorescence lifetime detection in capillary electrophoresis.
    Li LC; McGown LB
    Anal Chem; 1996 Sep; 68(17):2737-43. PubMed ID: 8794914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring the Oxygen Dynamics of Brain Tissue In Vivo by Fast Acousto-Optic Scanning Microscopy: A Proposed Instrument.
    Zhou Z; Chen D; Huang Z; Wang S; Zeng S
    Adv Exp Med Biol; 2016; 923():393-399. PubMed ID: 27526168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast electrophoretic analysis of individual mitochondria using microchip capillary electrophoresis with laser induced fluorescence detection.
    Duffy CF; MacCraith B; Diamond D; O'Kennedy R; Arriaga EA
    Lab Chip; 2006 Aug; 6(8):1007-11. PubMed ID: 16874370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Side-entry laser-beam zigzag irradiation of multiple channels in a microchip for simultaneous and highly sensitive detection of fluorescent analytes.
    Anazawa T; Yokoi T; Uchiho Y
    Anal Chem; 2015 Sep; 87(17):8623-8. PubMed ID: 26296140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser-induced fluorescence detection of 9-fluorenylmethyl chloroformate derivatized amino acids in capillary electrophoresis.
    Chan KC; Janini GM; Muschik GM; Issaq HJ
    J Chromatogr A; 1993 Oct; 653(1):93-7. PubMed ID: 8269054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic chip-based cell electrophoresis with multipoint laser-induced fluorescence detection system.
    Yu L; Shen Z; Mo J; Dong X; Qin J; Lin B
    Electrophoresis; 2007 Dec; 28(24):4741-7. PubMed ID: 18072215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scanning laser measure of optical quality of the cultured crystalline lens.
    Weerheim JA; Sivak JG
    Ophthalmic Physiol Opt; 1992 Jan; 12(1):72-9. PubMed ID: 1584621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.