These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 10596835)

  • 21. Coactivation of pre- and postsynaptic signaling mechanisms determines cell-specific spike-timing-dependent plasticity.
    Tzounopoulos T; Rubio ME; Keen JE; Trussell LO
    Neuron; 2007 Apr; 54(2):291-301. PubMed ID: 17442249
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spike timing-dependent plasticity: a Hebbian learning rule.
    Caporale N; Dan Y
    Annu Rev Neurosci; 2008; 31():25-46. PubMed ID: 18275283
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How the shape of pre- and postsynaptic signals can influence STDP: a biophysical model.
    Saudargiene A; Porr B; Wörgötter F
    Neural Comput; 2004 Mar; 16(3):595-625. PubMed ID: 15006093
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Natural Firing Patterns Imply Low Sensitivity of Synaptic Plasticity to Spike Timing Compared with Firing Rate.
    Graupner M; Wallisch P; Ostojic S
    J Neurosci; 2016 Nov; 36(44):11238-11258. PubMed ID: 27807166
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling inhibitory plasticity in the electrosensory system of mormyrid electric fish.
    Roberts PD
    J Neurophysiol; 2000 Oct; 84(4):2035-47. PubMed ID: 11024096
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of synaptic dynamics and heterogeneity in neuronal learning of temporal code.
    Rotman Z; Klyachko VA
    J Neurophysiol; 2013 Nov; 110(10):2275-86. PubMed ID: 23926043
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mathematical properties of neuronal TD-rules and differential Hebbian learning: a comparison.
    Kolodziejski C; Porr B; Wörgötter F
    Biol Cybern; 2008 Mar; 98(3):259-72. PubMed ID: 18196266
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Local learning rules: predicted influence of dendritic location on synaptic modification in spike-timing-dependent plasticity.
    Saudargiene A; Porr B; Wörgötter F
    Biol Cybern; 2005 Feb; 92(2):128-38. PubMed ID: 15696313
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction of inhibition and triplets of excitatory spikes modulates the NMDA-R-mediated synaptic plasticity in a computational model of spike timing-dependent plasticity.
    Cutsuridis V
    Hippocampus; 2013 Jan; 23(1):75-86. PubMed ID: 22851353
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Learning input correlations through nonlinear temporally asymmetric Hebbian plasticity.
    Gütig R; Aharonov R; Rotter S; Sompolinsky H
    J Neurosci; 2003 May; 23(9):3697-714. PubMed ID: 12736341
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stable learning in stochastic network states.
    El Boustani S; Yger P; Frégnac Y; Destexhe A
    J Neurosci; 2012 Jan; 32(1):194-214. PubMed ID: 22219282
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spike-timing dependent synaptic plasticity: a phenomenological framework.
    Kistler WM
    Biol Cybern; 2002 Dec; 87(5-6):416-27. PubMed ID: 12461631
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-regulation mechanism of temporally asymmetric Hebbian plasticity.
    Matsumoto N; Okada M
    Neural Comput; 2002 Dec; 14(12):2883-902. PubMed ID: 12487796
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mathematical formulations of Hebbian learning.
    Gerstner W; Kistler WM
    Biol Cybern; 2002 Dec; 87(5-6):404-15. PubMed ID: 12461630
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Triplets of spikes in a model of spike timing-dependent plasticity.
    Pfister JP; Gerstner W
    J Neurosci; 2006 Sep; 26(38):9673-82. PubMed ID: 16988038
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temporal dynamics of rate-based synaptic plasticity rules in a stochastic model of spike-timing-dependent plasticity.
    Elliott T
    Neural Comput; 2008 Sep; 20(9):2253-307. PubMed ID: 18336079
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling synaptic plasticity in conjuction with the timing of pre- and postsynaptic action potentials.
    Kistler WM; van Hemmen JL
    Neural Comput; 2000 Feb; 12(2):385-405. PubMed ID: 10636948
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spike-timing dependent inhibitory plasticity to learn a selective gating of backpropagating action potentials.
    Wilmes KA; Schleimer JH; Schreiber S
    Eur J Neurosci; 2017 Apr; 45(8):1032-1043. PubMed ID: 27374316
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stability and Competition in Multi-spike Models of Spike-Timing Dependent Plasticity.
    Babadi B; Abbott LF
    PLoS Comput Biol; 2016 Mar; 12(3):e1004750. PubMed ID: 26939080
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Beyond spike timing: the role of nonlinear plasticity and unreliable synapses.
    Senn W
    Biol Cybern; 2002 Dec; 87(5-6):344-55. PubMed ID: 12461625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.