These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 10597635)

  • 41. Analysis of the exon-intron structures of fish, amphibian, bird and mammalian hatching enzyme genes, with special reference to the intron loss evolution of hatching enzyme genes in Teleostei.
    Kawaguchi M; Yasumasu S; Hiroi J; Naruse K; Suzuki T; Iuchi I
    Gene; 2007 May; 392(1-2):77-88. PubMed ID: 17222522
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Asymmetric evolution in two fish-specifically duplicated receptor tyrosine kinase paralogons involved in teleost coloration.
    Braasch I; Salzburger W; Meyer A
    Mol Biol Evol; 2006 Jun; 23(6):1192-202. PubMed ID: 16547150
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fourfold paralogy regions on human HOX-bearing chromosomes: role of ancient segmental duplications in the evolution of vertebrate genome.
    Asrar Z; Haq F; Abbasi AA
    Mol Phylogenet Evol; 2013 Mar; 66(3):737-47. PubMed ID: 23142696
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Vertebrate genome evolution: a slow shuffle or a big bang?
    Smith NG; Knight R; Hurst LD
    Bioessays; 1999 Aug; 21(8):697-703. PubMed ID: 10440866
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Single-copy DNA and vertebrate phylogeny.
    Morescalchi A; Olmo E
    Cytogenet Cell Genet; 1982; 34(1-2):93-101. PubMed ID: 7151494
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates.
    Berthelot C; Brunet F; Chalopin D; Juanchich A; Bernard M; Noël B; Bento P; Da Silva C; Labadie K; Alberti A; Aury JM; Louis A; Dehais P; Bardou P; Montfort J; Klopp C; Cabau C; Gaspin C; Thorgaard GH; Boussaha M; Quillet E; Guyomard R; Galiana D; Bobe J; Volff JN; Genêt C; Wincker P; Jaillon O; Roest Crollius H; Guiguen Y
    Nat Commun; 2014 Apr; 5():3657. PubMed ID: 24755649
    [TBL] [Abstract][Full Text] [Related]  

  • 47. New paralogues and revised time line in the expansion of the vertebrate GH18 family.
    Hussain M; Wilson JB
    J Mol Evol; 2013 Apr; 76(4):240-60. PubMed ID: 23558346
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantitative Approach to Fish Cytogenetics in the Context of Vertebrate Genome Evolution.
    Borůvková V; Howell WM; Matoulek D; Symonová R
    Genes (Basel); 2021 Feb; 12(2):. PubMed ID: 33671814
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microsatellite evolution in vertebrates: inference from AC dinucleotide repeats.
    Neff BD; Gross MR
    Evolution; 2001 Sep; 55(9):1717-33. PubMed ID: 11681728
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Vertebrate evolution: recent perspectives from fish.
    Aparicio S
    Trends Genet; 2000 Feb; 16(2):54-6. PubMed ID: 10652527
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evolutionary changes in CpG and methylation levels in the genome of vertebrates.
    Jabbari K; Cacciò S; Païs de Barros JP; Desgrès J; Bernardi G
    Gene; 1997 Dec; 205(1-2):109-18. PubMed ID: 9461384
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A comparative genomic framework for the fish-tetrapod transition.
    Ahlberg PE
    Sci China Life Sci; 2021 Apr; 64(4):664-666. PubMed ID: 33660224
    [No Abstract]   [Full Text] [Related]  

  • 53. slc26a12-A novel member of the slc26 family, is located in tandem with slc26a2 in coelacanths, amphibians, reptiles, and birds.
    Nagashima A; Torii K; Ota C; Kato A
    Physiol Rep; 2024 Jun; 12(11):e16089. PubMed ID: 38828713
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A new look at an old question: when did the second whole genome duplication occur in vertebrate evolution?
    Holland LZ; Ocampo Daza D
    Genome Biol; 2018 Nov; 19(1):209. PubMed ID: 30486862
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Gene duplication and divergence in the early evolution of vertebrates.
    Mazet F; Shimeld SM
    Curr Opin Genet Dev; 2002 Aug; 12(4):393-6. PubMed ID: 12100882
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Frequent birth-and-death events throughout perforin-1 evolution.
    Araujo-Voces M; Quesada V
    BMC Evol Biol; 2020 Oct; 20(1):135. PubMed ID: 33076840
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Anciently duplicated genes continuously recruited to heart expression in vertebrate evolution are associated with heart chamber increase.
    Zou Y; Yang J; Zhou J; Liu G; Shen L; Zhou Z; Su Z; Gu X
    J Exp Zool B Mol Dev Evol; 2024 Mar; 342(2):106-114. PubMed ID: 38361319
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evolutionary analysis of the segment from helix 3 through helix 5 in vertebrate progesterone receptors.
    Baker ME; Uh KY
    J Steroid Biochem Mol Biol; 2012 Oct; 132(1-2):32-40. PubMed ID: 22575083
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Repair-mediated duplication by capture of proximal chromosomal DNA has shaped vertebrate genome evolution.
    Pace JK; Sen SK; Batzer MA; Feschotte C
    PLoS Genet; 2009 May; 5(5):e1000469. PubMed ID: 19424419
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Vertebrate neurogenic placode development: historical highlights that have shaped our current understanding.
    Stark MR
    Dev Dyn; 2014 Oct; 243(10):1167-75. PubMed ID: 24899368
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.