BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 10598622)

  • 1. First-pass lung uptake and pulmonary clearance of propofol: assessment with a recirculatory indocyanine green pharmacokinetic model.
    Kuipers JA; Boer F; Olieman W; Burm AG; Bovill JG
    Anesthesiology; 1999 Dec; 91(6):1780-7. PubMed ID: 10598622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pulmonary disposition of propofol in surgical patients.
    He YL; Ueyama H; Tashiro C; Mashimo T; Yoshiya I
    Anesthesiology; 2000 Oct; 93(4):986-91. PubMed ID: 11020751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kidneys contribute to the extrahepatic clearance of propofol in humans, but not lungs and brain.
    Hiraoka H; Yamamoto K; Miyoshi S; Morita T; Nakamura K; Kadoi Y; Kunimoto F; Horiuchi R
    Br J Clin Pharmacol; 2005 Aug; 60(2):176-82. PubMed ID: 16042671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The two-compartment recirculatory pharmacokinetic model--an introduction to recirculatory pharmacokinetic concepts.
    Upton RN
    Br J Anaesth; 2004 Apr; 92(4):475-84. PubMed ID: 14766714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recirculatory pharmacokinetics and pharmacodynamics of rocuronium in patients: the influence of cardiac output.
    Kuipers JA; Boer F; Olofsen E; Bovill JG; Burm AG
    Anesthesiology; 2001 Jan; 94(1):47-55. PubMed ID: 11135721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possible overestimation of indocyanine green-derived plasma volume early after induction of anesthesia with propofol/fentanyl.
    Mi WD; Ishihara H; Sakai T; Matsuki A
    Anesth Analg; 2003 Nov; 97(5):1421-1427. PubMed ID: 14570660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Do the lungs contribute to propofol elimination in patients during orthotopic liver transplantation without veno-venous bypass?
    Chen YZ; Zhu SM; He HL; Xu JH; Huang SQ; Chen QL
    Hepatobiliary Pancreat Dis Int; 2006 Nov; 5(4):511-4. PubMed ID: 17085334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recirculatory and compartmental pharmacokinetic modeling of alfentanil in pigs: the influence of cardiac output.
    Kuipers JA; Boer F; Olofsen E; Olieman W; Vletter AA; Burm AG; Bovill JG
    Anesthesiology; 1999 Apr; 90(4):1146-57. PubMed ID: 10201688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A physiological model of induction of anaesthesia with propofol in sheep. 1. Structure and estimation of variables.
    Upton RN; Ludbrook GL
    Br J Anaesth; 1997 Oct; 79(4):497-504. PubMed ID: 9389270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ketamine distribution described by a recirculatory pharmacokinetic model is not stereoselective.
    Henthorn TK; Krejcie TC; Niemann CU; Enders-Klein C; Shanks CA; Avram MJ
    Anesthesiology; 1999 Dec; 91(6):1733-43. PubMed ID: 10598617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Performance of an Artificial Neural Network Model in Predicting the Early Distribution Kinetics of Propofol in Morbidly Obese and Lean Subjects.
    Ingrande J; Gabriel RA; McAuley J; Krasinska K; Chien A; Lemmens HJM
    Anesth Analg; 2020 Nov; 131(5):1500-1509. PubMed ID: 33079873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cardiac output is a determinant of the initial concentrations of propofol after short-infusion administration.
    Upton RN; Ludbrook GL; Grant C; Martinez AM
    Anesth Analg; 1999 Sep; 89(3):545-52. PubMed ID: 10475279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do the kidneys contribute to propofol elimination?
    Takata K; Kurita T; Morishima Y; Morita K; Uraoka M; Sato S
    Br J Anaesth; 2008 Nov; 101(5):648-52. PubMed ID: 18784068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulmonary uptake of propofol in cats. Effect of fentanyl and halothane.
    Matot I; Neely CF; Katz RY; Neufeld GR
    Anesthesiology; 1993 Jun; 78(6):1157-65. PubMed ID: 8512110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A recirculatory pharmacokinetic model describing the circulatory mixing, tissue distribution and elimination of antipyrine in dogs.
    Krejcie TC; Henthorn TK; Shanks CA; Avram MJ
    J Pharmacol Exp Ther; 1994 May; 269(2):609-16. PubMed ID: 8182527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epinephrine, norepinephrine and dopamine infusions decrease propofol concentrations during continuous propofol infusion in an ovine model.
    Myburgh JA; Upton RN; Grant C; Martinez A
    Intensive Care Med; 2001 Jan; 27(1):276-82. PubMed ID: 11280648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recirculatory pharmacokinetic models of markers of blood, extracellular fluid and total body water administered concomitantly.
    Krejcie TC; Henthorn TK; Niemann CU; Klein C; Gupta DK; Gentry WB; Shanks CA; Avram MJ
    J Pharmacol Exp Ther; 1996 Sep; 278(3):1050-7. PubMed ID: 8819485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of propofol and dexmedetomidine on indocyanine green elimination assessed with LIMON to patients with early septic shock: a pilot study.
    Memiş D; Kargi M; Sut N
    J Crit Care; 2009 Dec; 24(4):603-8. PubMed ID: 19931154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The performance of compartmental and physiologically based recirculatory pharmacokinetic models for propofol: a comparison using bolus, continuous, and target-controlled infusion data.
    Masui K; Upton RN; Doufas AG; Coetzee JF; Kazama T; Mortier EP; Struys MM
    Anesth Analg; 2010 Aug; 111(2):368-79. PubMed ID: 19861357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of human lungs in the biotransformation of propofol.
    Dawidowicz AL; Fornal E; Mardarowicz M; Fijalkowska A
    Anesthesiology; 2000 Oct; 93(4):992-7. PubMed ID: 11020752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.