These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 10598746)
1. Rat cytochromes P450 (CYP) specifically contribute to the reductive bioactivation of AQ4N, an alkylaminoanthraquinone-di-N-oxide anticancer prodrug. Raleigh SM; Wanogho E; Burke MD; Patterson LH Xenobiotica; 1999 Nov; 29(11):1115-22. PubMed ID: 10598746 [TBL] [Abstract][Full Text] [Related]
2. Antitumour prodrug development using cytochrome P450 (CYP) mediated activation. Patterson LH; McKeown SR; Robson T; Gallagher R; Raleigh SM; Orr S Anticancer Drug Des; 1999 Dec; 14(6):473-86. PubMed ID: 10834269 [TBL] [Abstract][Full Text] [Related]
3. Involvement of human cytochromes P450 (CYP) in the reductive metabolism of AQ4N, a hypoxia activated anthraquinone di-N-oxide prodrug. Raleigh SM; Wanogho E; Burke MD; McKeown SR; Patterson LH Int J Radiat Oncol Biol Phys; 1998 Nov; 42(4):763-7. PubMed ID: 9845092 [TBL] [Abstract][Full Text] [Related]
4. Bioreductively activated antitumor N-oxides: the case of AQ4N, a unique approach to hypoxia-activated cancer chemotherapy. Patterson LH Drug Metab Rev; 2002 Aug; 34(3):581-92. PubMed ID: 12214668 [TBL] [Abstract][Full Text] [Related]
5. Bioreductive GDEPT using cytochrome P450 3A4 in combination with AQ4N. McCarthy HO; Yakkundi A; McErlane V; Hughes CM; Keilty G; Murray M; Patterson LH; Hirst DG; McKeown SR; Robson T Cancer Gene Ther; 2003 Jan; 10(1):40-8. PubMed ID: 12489027 [TBL] [Abstract][Full Text] [Related]
6. Rationale for the use of aliphatic N-oxides of cytotoxic anthraquinones as prodrug DNA binding agents: a new class of bioreductive agent. Patterson LH Cancer Metastasis Rev; 1993 Jun; 12(2):119-34. PubMed ID: 8375016 [TBL] [Abstract][Full Text] [Related]
7. Initial characterization of the major mouse cytochrome P450 enzymes involved in the reductive metabolism of the hypoxic cytotoxin 3-amino-1,2,4-benzotriazine-1,4-di-N-oxide (tirapazamine, SR 4233, WIN 59075). Riley RJ; Hemingway SA; Graham MA; Workman P Biochem Pharmacol; 1993 Mar; 45(5):1065-77. PubMed ID: 8461036 [TBL] [Abstract][Full Text] [Related]
8. Hypoxia-selective targeting by the bioreductive prodrug AQ4N in patients with solid tumors: results of a phase I study. Albertella MR; Loadman PM; Jones PH; Phillips RM; Rampling R; Burnet N; Alcock C; Anthoney A; Vjaters E; Dunk CR; Harris PA; Wong A; Lalani AS; Twelves CJ Clin Cancer Res; 2008 Feb; 14(4):1096-104. PubMed ID: 18281542 [TBL] [Abstract][Full Text] [Related]
9. Tumor-selective drug activation: a GDEPT approach utilizing cytochrome P450 1A1 and AQ4N. Yakkundi A; McErlane V; Murray M; McCarthy HO; Ward C; Hughes CM; Patterson LH; Hirst DG; McKeown SR; Robson T Cancer Gene Ther; 2006 Jun; 13(6):598-605. PubMed ID: 16410820 [TBL] [Abstract][Full Text] [Related]
10. Efficient hypoxic activation of the anticancer agent AQ4N by CYP2S1 and CYP2W1. Nishida CR; Lee M; de Montellano PR Mol Pharmacol; 2010 Sep; 78(3):497-502. PubMed ID: 20566689 [TBL] [Abstract][Full Text] [Related]
11. Reductive heme-dependent activation of the n-oxide prodrug AQ4N by nitric oxide synthase. Nishida CR; Ortiz de Montellano PR J Med Chem; 2008 Aug; 51(16):5118-20. PubMed ID: 18681417 [TBL] [Abstract][Full Text] [Related]
12. Effects of AQ4N and its reduction product on radiation-mediated DNA strand breakage. Ali MM; Symons MC; Taiwo FA; Patterson LH Chem Biol Interact; 1999 Nov; 123(1):1-10. PubMed ID: 10597898 [TBL] [Abstract][Full Text] [Related]
13. A cytochrome P450 2B6 meditated gene therapy strategy to enhance the effects of radiation or cyclophosphamide when combined with the bioreductive drug AQ4N. McErlane V; Yakkundi A; McCarthy HO; Hughes CM; Patterson LH; Hirst DG; Robson T; McKeown SR J Gene Med; 2005 Jul; 7(7):851-9. PubMed ID: 15712360 [TBL] [Abstract][Full Text] [Related]
14. A preclinical pharmacokinetic study of the bioreductive drug AQ4N. Loadman PM; Swaine DJ; Bibby MC; Welham KJ; Patterson LH Drug Metab Dispos; 2001 Apr; 29(4 Pt 1):422-6. PubMed ID: 11259326 [TBL] [Abstract][Full Text] [Related]
15. Selective tumor targeting by the hypoxia-activated prodrug AQ4N blocks tumor growth and metastasis in preclinical models of pancreatic cancer. Lalani AS; Alters SE; Wong A; Albertella MR; Cleland JL; Henner WD Clin Cancer Res; 2007 Apr; 13(7):2216-25. PubMed ID: 17404106 [TBL] [Abstract][Full Text] [Related]
16. One-electron reductive bioactivation of 2,3,5,6-tetramethylbenzoquinone by cytochrome P450. Goeptar AR; te Koppele JM; van Maanen JM; Zoetemelk CE; Vermeulen NP Biochem Pharmacol; 1992 Jan; 43(2):343-52. PubMed ID: 1310854 [TBL] [Abstract][Full Text] [Related]
17. In vivo activation of the hypoxia-targeted cytotoxin AQ4N in human tumor xenografts. Williams KJ; Albertella MR; Fitzpatrick B; Loadman PM; Shnyder SD; Chinje EC; Telfer BA; Dunk CR; Harris PA; Stratford IJ Mol Cancer Ther; 2009 Dec; 8(12):3266-75. PubMed ID: 19996276 [TBL] [Abstract][Full Text] [Related]
18. Oxidation of 1,2-epoxy-3-butene to 1,2:3,4-diepoxybutane by cDNA-expressed human cytochromes P450 2E1 and 3A4 and human, mouse and rat liver microsomes. Seaton MJ; Follansbee MH; Bond JA Carcinogenesis; 1995 Oct; 16(10):2287-93. PubMed ID: 7586124 [TBL] [Abstract][Full Text] [Related]
19. AQ4N: an alkylaminoanthraquinone N-oxide showing bioreductive potential and positive interaction with radiation in vivo. McKeown SR; Hejmadi MV; McIntyre IA; McAleer JJ; Patterson LH Br J Cancer; 1995 Jul; 72(1):76-81. PubMed ID: 7599069 [TBL] [Abstract][Full Text] [Related]
20. Biotransformation of parathion in human liver: participation of CYP3A4 and its inactivation during microsomal parathion oxidation. Butler AM; Murray M J Pharmacol Exp Ther; 1997 Feb; 280(2):966-73. PubMed ID: 9023313 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]