These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 10599002)
1. Hydroxyapatite composites designed for antibiotic drug delivery and bone reconstruction: a caprine model. Rogers-Foy JM; Powers DL; Brosnan DA; Barefoot SF; Friedman RJ; LaBerge M J Invest Surg; 1999; 12(5):263-75. PubMed ID: 10599002 [TBL] [Abstract][Full Text] [Related]
2. Keratin-hydroxyapatite composites: biocompatibility, osseointegration, and physical properties in an ovine model. Dias GJ; Mahoney P; Swain M; Kelly RJ; Smith RA; Ali MA J Biomed Mater Res A; 2010 Dec; 95(4):1084-95. PubMed ID: 20878901 [TBL] [Abstract][Full Text] [Related]
3. Comparative in vivo study of six hydroxyapatite-based bone graft substitutes. Habibovic P; Kruyt MC; Juhl MV; Clyens S; Martinetti R; Dolcini L; Theilgaard N; van Blitterswijk CA J Orthop Res; 2008 Oct; 26(10):1363-70. PubMed ID: 18404698 [TBL] [Abstract][Full Text] [Related]
4. Bioactivity in glass/PMMA composites used as drug delivery system. Arcos D; Ragel CV; Vallet-Regí M Biomaterials; 2001 Apr; 22(7):701-8. PubMed ID: 11246964 [TBL] [Abstract][Full Text] [Related]
5. Bone ingrowth into two porous ceramics with different pore sizes: an experimental study. Galois L; Mainard D Acta Orthop Belg; 2004 Dec; 70(6):598-603. PubMed ID: 15669463 [TBL] [Abstract][Full Text] [Related]
6. Characterization of bone ingrowth and interface mechanics of a new porous 3D printed biomaterial: an animal study. Tanzer M; Chuang PJ; Ngo CG; Song L; TenHuisen KS Bone Joint J; 2019 Jun; 101-B(6_Supple_B):62-67. PubMed ID: 31146557 [TBL] [Abstract][Full Text] [Related]
7. Hydroxyapatite impregnated bone cement: in vitro and in vivo studies. Kwon SY; Kim YS; Woo YK; Kim SS; Park JB Biomed Mater Eng; 1997; 7(2):129-40. PubMed ID: 9262826 [TBL] [Abstract][Full Text] [Related]
8. Assessment of tricalcium phosphate/collagen (TCP/collagene)nanocomposite scaffold compared with hydroxyapatite (HA) on healing of segmental femur bone defect in rabbits. Mohseni M; Jahandideh A; Abedi G; Akbarzadeh A; Hesaraki S Artif Cells Nanomed Biotechnol; 2018 Mar; 46(2):242-249. PubMed ID: 28503937 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of the in vivo osteogenic potential of marrow/hydroxyapatite composites by bovine bone morphogenetic protein. Noshi T; Yoshikawa T; Ikeuchi M; Dohi Y; Ohgushi H; Horiuchi K; Sugimura M; Ichijima K; Yonemasu K J Biomed Mater Res; 2000 Dec; 52(4):621-30. PubMed ID: 11033544 [TBL] [Abstract][Full Text] [Related]
10. Novel mesoporous silica-based antibiotic releasing scaffold for bone repair. Shi X; Wang Y; Ren L; Zhao N; Gong Y; Wang DA Acta Biomater; 2009 Jun; 5(5):1697-707. PubMed ID: 19217361 [TBL] [Abstract][Full Text] [Related]
11. Implant-delivered Alendronate Causes a Dose-dependent Response on Net Bone Formation Around Porous Titanium Implants in Canines. Pura JA; Bobyn JD; Tanzer M Clin Orthop Relat Res; 2016 May; 474(5):1224-33. PubMed ID: 26831478 [TBL] [Abstract][Full Text] [Related]
12. [Effect of fibrin on osseointegration of bioactive glass-ceramic materials--experimental study]. Urban K; Povýsil C; Spelda S Acta Chir Orthop Traumatol Cech; 2001; 68(3):168-75. PubMed ID: 11706539 [TBL] [Abstract][Full Text] [Related]
13. Gentamicin-loaded hydraulic calcium phosphate bone cement as antibiotic delivery system. Bohner M; Lemaître J; Van Landuyt P; Zambelli PY; Merkle HP; Gander B J Pharm Sci; 1997 May; 86(5):565-72. PubMed ID: 9145380 [TBL] [Abstract][Full Text] [Related]
14. Hydroxyapatite/poly(epsilon-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Kim HW; Knowles JC; Kim HE Biomaterials; 2004; 25(7-8):1279-87. PubMed ID: 14643602 [TBL] [Abstract][Full Text] [Related]
15. The influence of a hydroxyapatite and tricalcium-phosphate coating on bone growth into titanium fiber-metal implants. Tisdel CL; Goldberg VM; Parr JA; Bensusan JS; Staikoff LS; Stevenson S J Bone Joint Surg Am; 1994 Feb; 76(2):159-71. PubMed ID: 8113249 [TBL] [Abstract][Full Text] [Related]
16. Biphasic calcium phosphate/hydrosoluble polymer composites: a new concept for bone and dental substitution biomaterials. Daculsi G; Weiss P; Bouler JM; Gauthier O; Millot F; Aguado E Bone; 1999 Aug; 25(2 Suppl):59S-61S. PubMed ID: 10458277 [TBL] [Abstract][Full Text] [Related]
17. Comparison of in vivo bioactivity and compressive strength of a novel superporous hydroxyapatite with beta-tricalcium phosphates. Okanoue Y; Ikeuchi M; Takemasa R; Tani T; Matsumoto T; Sakamoto M; Nakasu M Arch Orthop Trauma Surg; 2012 Nov; 132(11):1603-10. PubMed ID: 22760581 [TBL] [Abstract][Full Text] [Related]
18. In vivo evaluation of a novel porous hydroxyapatite to sustain osteogenesis of transplanted bone marrow-derived osteoblastic cells. Dong J; Kojima H; Uemura T; Kikuchi M; Tateishi T; Tanaka J J Biomed Mater Res; 2001 Nov; 57(2):208-16. PubMed ID: 11484183 [TBL] [Abstract][Full Text] [Related]
19. Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model. Fellah BH; Gauthier O; Weiss P; Chappard D; Layrolle P Biomaterials; 2008 Mar; 29(9):1177-88. PubMed ID: 18093645 [TBL] [Abstract][Full Text] [Related]
20. A 12 month in vivo study on the response of bone to a hydroxyapatite-polymethylmethacrylate cranioplasty composite. Itokawa H; Hiraide T; Moriya M; Fujimoto M; Nagashima G; Suzuki R; Fujimoto T Biomaterials; 2007 Nov; 28(33):4922-7. PubMed ID: 17707904 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]