BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

539 related articles for article (PubMed ID: 10600170)

  • 1. Effect of training on H(2)O(2) release by mitochondria from rat skeletal muscle.
    Venditti P; Masullo P; Di Meo S
    Arch Biochem Biophys; 1999 Dec; 372(2):315-20. PubMed ID: 10600170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of endurance training and creatine depletion on regional mitochondrial adaptations in rat skeletal muscle.
    Roussel D; Lhenry F; Ecochard L; Sempore B; Rouanet JL; Favier R
    Biochem J; 2000 Sep; 350 Pt 2(Pt 2):547-53. PubMed ID: 10947970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topology of superoxide production from different sites in the mitochondrial electron transport chain.
    St-Pierre J; Buckingham JA; Roebuck SJ; Brand MD
    J Biol Chem; 2002 Nov; 277(47):44784-90. PubMed ID: 12237311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vitamin E reduces cold-induced oxidative stress in rat skeletal muscle decreasing mitochondrial H(2)O(2) release and tissue susceptibility to oxidants.
    Venditti P; Di Stefano L; Di Meo S
    Redox Rep; 2009; 14(4):167-75. PubMed ID: 19695124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of training on antioxidant capacity, tissue damage, and endurance of adult male rats.
    Venditti P; Di Meo S
    Int J Sports Med; 1997 Oct; 18(7):497-502. PubMed ID: 9414071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exercise training decreases rat heart mitochondria free radical generation but does not prevent Ca2+-induced dysfunction.
    Starnes JW; Barnes BD; Olsen ME
    J Appl Physiol (1985); 2007 May; 102(5):1793-8. PubMed ID: 17303708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of voluntary exercise on H2O2 release by subsarcolemmal and intermyofibrillar mitochondria.
    Servais S; Couturier K; Koubi H; Rouanet JL; Desplanches D; Sornay-Mayet MH; Sempore B; Lavoie JM; Favier R
    Free Radic Biol Med; 2003 Jul; 35(1):24-32. PubMed ID: 12826253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential responses to endurance training in subsarcolemmal and intermyofibrillar mitochondria.
    Bizeau ME; Willis WT; Hazel JR
    J Appl Physiol (1985); 1998 Oct; 85(4):1279-84. PubMed ID: 9760317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondria of trained skeletal muscle are protected from deleterious effects of statins.
    Bouitbir J; Daussin F; Charles AL; Rasseneur L; Dufour S; Richard R; Piquard F; Geny B; Zoll J
    Muscle Nerve; 2012 Sep; 46(3):367-73. PubMed ID: 22907227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyphenols prevent ageing-related impairment in skeletal muscle mitochondrial function through decreased reactive oxygen species production.
    Charles AL; Meyer A; Dal-Ros S; Auger C; Keller N; Ramamoorthy TG; Zoll J; Metzger D; Schini-Kerth V; Geny B
    Exp Physiol; 2013 Feb; 98(2):536-45. PubMed ID: 22903980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vitamin E attenuates cold-induced rat liver oxidative damage reducing H2O2 mitochondrial release.
    Venditti P; Bari A; Di Stefano L; Di Meo S
    Int J Biochem Cell Biol; 2007; 39(9):1731-42. PubMed ID: 17553729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolated respiring heart mitochondria release reactive oxygen species in states 4 and 3.
    Saborido A; Soblechero L; Megías A
    Free Radic Res; 2005 Sep; 39(9):921-31. PubMed ID: 16087473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shift in the localization of sites of hydrogen peroxide production in brain mitochondria by mitochondrial stress.
    Gyulkhandanyan AV; Pennefather PS
    J Neurochem; 2004 Jul; 90(2):405-21. PubMed ID: 15228597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endurance training attenuates the bioenergetics alterations of rat skeletal muscle mitochondria submitted to acute hypoxia: role of ROS and UCP3.
    Bo H; Wang YH; Li HY; Zhao J; Zhang HY; Tong CQ
    Sheng Li Xue Bao; 2008 Dec; 60(6):767-76. PubMed ID: 19082433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise.
    Goncalves RL; Quinlan CL; Perevoshchikova IV; Hey-Mogensen M; Brand MD
    J Biol Chem; 2015 Jan; 290(1):209-27. PubMed ID: 25389297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brown adipose tissue mitochondria: modulation by GDP and fatty acids depends on the respiratory substrates.
    De Meis L; Ketzer LA; Camacho-Pereira J; Galina A
    Biosci Rep; 2012 Feb; 32(1):53-9. PubMed ID: 21561434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition by purine nucleotides of the release of reactive oxygen species from muscle mitochondria: indication for a function of uncoupling proteins as superoxide anion transporters.
    Wojtczak L; Lebiedzińska M; Suski JM; Więckowski MR; Schönfeld P
    Biochem Biophys Res Commun; 2011 Apr; 407(4):772-6. PubMed ID: 21439941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of cyclosporine A on skeletal muscle mitochondrial respiration and endurance time in rats.
    Mercier JG; Hokanson JF; Brooks GA
    Am J Respir Crit Care Med; 1995 May; 151(5):1532-6. PubMed ID: 7735611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature controls oxidative phosphorylation and reactive oxygen species production through uncoupling in rat skeletal muscle mitochondria.
    Jarmuszkiewicz W; Woyda-Ploszczyca A; Koziel A; Majerczak J; Zoladz JA
    Free Radic Biol Med; 2015 Jun; 83():12-20. PubMed ID: 25701433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of mild uncoupling and non-coupled respiration in the regulation of hydrogen peroxide generation by plant mitochondria.
    Casolo V; Braidot E; Chiandussi E; Macrì F; Vianello A
    FEBS Lett; 2000 May; 474(1):53-7. PubMed ID: 10828450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.