BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 10600176)

  • 1. Lysine 219 participates in NADPH specificity in a flavin-containing monooxygenase from Saccharomyces cerevisiae.
    Suh JK; Poulsen LL; Ziegler DM; Robertus JD
    Arch Biochem Biophys; 1999 Dec; 372(2):360-6. PubMed ID: 10600176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the kinetic mechanism and coenzyme specificity of glutathione reductase from the cyanobacterium Anabaena PCC 7120 by redesign of the pyridine-nucleotide-binding site.
    Danielson UH; Jiang F; Hansson LO; Mannervik B
    Biochemistry; 1999 Jul; 38(29):9254-63. PubMed ID: 10413499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox regulation of yeast flavin-containing monooxygenase.
    Suh JK; Poulsen LL; Ziegler DM; Robertus JD
    Arch Biochem Biophys; 2000 Sep; 381(2):317-22. PubMed ID: 11032421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering and characterization of a NADPH-utilizing cytochrome b5 reductase.
    Marohnic CC; Bewley MC; Barber MJ
    Biochemistry; 2003 Sep; 42(38):11170-82. PubMed ID: 14503867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assimilatory nitrate reductase: lysine 741 participates in pyridine nucleotide binding via charge complementarity.
    Barber MJ; Desai SK; Marohnic CC
    Arch Biochem Biophys; 2001 Oct; 394(1):99-110. PubMed ID: 11566032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterologous expression, purification, and characterization of an l-ornithine N(5)-hydroxylase involved in pyoverdine siderophore biosynthesis in Pseudomonas aeruginosa.
    Ge L; Seah SY
    J Bacteriol; 2006 Oct; 188(20):7205-10. PubMed ID: 17015659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
    McLean KJ; Scrutton NS; Munro AW
    Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The three-dimensional structures of the Mycobacterium tuberculosis dihydrodipicolinate reductase-NADH-2,6-PDC and -NADPH-2,6-PDC complexes. Structural and mutagenic analysis of relaxed nucleotide specificity.
    Cirilli M; Zheng R; Scapin G; Blanchard JS
    Biochemistry; 2003 Sep; 42(36):10644-50. PubMed ID: 12962488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutagenesis of Glycine 179 modulates both catalytic efficiency and reduced pyridine nucleotide specificity in cytochrome b5 reductase.
    Roma GW; Crowley LJ; Davis CA; Barber MJ
    Biochemistry; 2005 Oct; 44(41):13467-76. PubMed ID: 16216070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of Lys-308 in the FAD-dependent oxidase activity of NADH dehydrogenase from an alkaliphilic Bacillus.
    Kitazume Y; Mutoh M; Shiraki M; Koyama N
    Res Microbiol; 2006 Dec; 157(10):956-9. PubMed ID: 17097855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural determinants of nucleotide coenzyme specificity in the distinctive dinucleotide binding fold of HMG-CoA reductase from Pseudomonas mevalonii.
    Friesen JA; Lawrence CM; Stauffacher CV; Rodwell VW
    Biochemistry; 1996 Sep; 35(37):11945-50. PubMed ID: 8810898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational study of the role of tyrosine-49 in the Saccharomyces cerevisiae xylose reductase.
    Jeong EY; Sopher C; Kim IS; Lee H
    Yeast; 2001 Aug; 18(11):1081-9. PubMed ID: 11481678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering of pyridine nucleotide specificity of nitrate reductase: mutagenesis of recombinant cytochrome b reductase fragment of Neurospora crassa NADPH:Nitrate reductase.
    Shiraishi N; Croy C; Kaur J; Campbell WH
    Arch Biochem Biophys; 1998 Oct; 358(1):104-15. PubMed ID: 9750171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. D175 discriminates between NADH and NADPH in the coenzyme binding site of Lactobacillus delbrueckii subsp. bulgaricus D-lactate dehydrogenase.
    Bernard N; Johnsen K; Holbrook JJ; Delcour J
    Biochem Biophys Res Commun; 1995 Mar; 208(3):895-900. PubMed ID: 7702618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The roles of Tyr(91) and Lys(162) in general acid-base catalysis in the pigeon NADP+-dependent malic enzyme.
    Kuo CC; Lin KY; Hsu YJ; Lin SY; Lin YT; Chang GG; Chou WY
    Biochem J; 2008 May; 411(3):467-73. PubMed ID: 18248329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular cloning and kinetic characterization of a flavin-containing monooxygenase from Saccharomyces cerevisiae.
    Suh JK; Poulsen LL; Ziegler DM; Robertus JD
    Arch Biochem Biophys; 1996 Dec; 336(2):268-74. PubMed ID: 8954574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A flavoprotein monooxygenase that catalyses a Baeyer-Villiger reaction and thioether oxidation using NADH as the nicotinamide cofactor.
    Jensen CN; Cartwright J; Ward J; Hart S; Turkenburg JP; Ali ST; Allen MJ; Grogan G
    Chembiochem; 2012 Apr; 13(6):872-8. PubMed ID: 22416037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and functional analysis of bacterial flavin-containing monooxygenase reveals its ping-pong-type reaction mechanism.
    Cho HJ; Cho HY; Kim KJ; Kim MH; Kim SW; Kang BS
    J Struct Biol; 2011 Jul; 175(1):39-48. PubMed ID: 21527346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae.
    Krahulec S; Klimacek M; Nidetzky B
    Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.