BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 10600381)

  • 1. Structural analysis of an RNase T1 variant with an altered guanine binding segment.
    Höschler K; Hoier H; Hubner B; Saenger W; Orth P; Hahn U
    J Mol Biol; 1999 Dec; 294(5):1231-8. PubMed ID: 10600381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structures of ribonuclease F1 of Fusarium moniliforme in its free form and in complex with 2'GMP.
    Vassylyev DG; Katayanagi K; Ishikawa K; Tsujimoto-Hirano M; Danno M; Pähler A; Matsumoto O; Matsushima M; Yoshida H; Morikawa K
    J Mol Biol; 1993 Apr; 230(3):979-96. PubMed ID: 8386773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNase T1 variant RV cleaves single-stranded RNA after purines due to specific recognition by the Asn46 side chain amide.
    Czaja R; Struhalla M; Höschler K; Saenger W; Sträter N; Hahn U
    Biochemistry; 2004 Mar; 43(10):2854-62. PubMed ID: 15005620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structures of the ribonuclease MC1 mutants N71T and N71S in complex with 5'-GMP: structural basis for alterations in substrate specificity.
    Numata T; Suzuki A; Kakuta Y; Kimura K; Yao M; Tanaka I; Yoshida Y; Ueda T; Kimura M
    Biochemistry; 2003 May; 42(18):5270-8. PubMed ID: 12731868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of ribonuclease T1 carboxymethylated at Glu58 in complex with 2'-GMP.
    Ishikawa K; Suzuki E; Tanokura M; Takahashi K
    Biochemistry; 1996 Jun; 35(25):8329-34. PubMed ID: 8679590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional structure of ribonuclease T1 complexed with an isosteric phosphonate substrate analogue of GpU: alternate substrate binding modes and catalysis.
    Arni RK; Watanabe L; Ward RJ; Kreitman RJ; Kumar K; Walz FG
    Biochemistry; 1999 Feb; 38(8):2452-61. PubMed ID: 10029539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer modeling studies of ribonuclease T1-guanosine monophosphate complexes.
    Balaji PV; Saenger W; Rao VS
    Biopolymers; 1990; 30(3-4):257-72. PubMed ID: 2177661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of ribonuclease T1 specificity by random mutagenesis of the substrate binding segment.
    Hubner B; Haensler M; Hahn U
    Biochemistry; 1999 Jan; 38(4):1371-6. PubMed ID: 9931000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures of free and complexed forms of Escherichia coli xanthine-guanine phosphoribosyltransferase.
    Vos S; Parry RJ; Burns MR; de Jersey J; Martin JL
    J Mol Biol; 1998 Oct; 282(4):875-89. PubMed ID: 9743633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of the purine nucleoside phosphorylase (PNP) from Cellulomonas sp. and its implication for the mechanism of trimeric PNPs.
    Tebbe J; Bzowska A; Wielgus-Kutrowska B; Schröder W; Kazimierczuk Z; Shugar D; Saenger W; Koellner G
    J Mol Biol; 1999 Dec; 294(5):1239-55. PubMed ID: 10600382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of internal motions of RNase T1 complexed with a productive substrate involving 15N NMR relaxation measurements.
    Yoshida Y; Tanaka M; Ohkuri T; Tanaka Y; Imoto T; Ueda T
    J Biochem; 2006 Jul; 140(1):43-8. PubMed ID: 16877767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular basis for nucleotide-binding specificity: role of the exocyclic amino group "N2" in recognition by a guanylyl-ribonuclease.
    Schrift GL; Waldron TT; Timmons MA; Ramaswamy S; Kearney WR; Murphy KP
    J Mol Biol; 2006 Jan; 355(1):72-84. PubMed ID: 16300786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purine activity of RNase T1RV is further improved by substitution of Trp59 by tyrosine.
    Czaja R; Perbandt M; Betzel C; Hahn U
    Biochem Biophys Res Commun; 2005 Oct; 336(3):882-9. PubMed ID: 16157302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallographic study of mechanism of ribonuclease T1-catalysed specific RNA hydrolysis.
    Heinemann U; Saenger W
    J Biomol Struct Dyn; 1983 Oct; 1(2):523-38. PubMed ID: 6086061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations of ribonuclease T1: comparison of the free enzyme and the 2' GMP-enzyme complex.
    MacKerell AD; Nilsson L; Rigler R; Heinemann U; Saenger W
    Proteins; 1989; 6(1):20-31. PubMed ID: 2558378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular basis of the recognition process: hydrogen-bonding patterns in the guanine primary recognition site of ribonuclease T1.
    Gu J; Wang J; Leszczynski J
    J Phys Chem B; 2006 Jul; 110(27):13590-6. PubMed ID: 16821886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Addressing the challenge of changing the specificity of RNase T1 with rational and evolutionary approaches.
    Struhalla M; Czaja R; Hahn U
    Chembiochem; 2004 Feb; 5(2):200-5. PubMed ID: 14760741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site specific point mutation changes specificity: a molecular modeling study by free energy simulations and enzyme kinetics of the thermodynamics in ribonuclease T1 substrate interactions.
    Elofsson A; Kulinski T; Rigler R; Nilsson L
    Proteins; 1993 Oct; 17(2):161-75. PubMed ID: 8265564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculation of the relative binding free energy of 2'GMP and 2'AMP to ribonuclease T1 using molecular dynamics/free energy perturbation approaches.
    Hirono S; Kollman PA
    J Mol Biol; 1990 Mar; 212(1):197-209. PubMed ID: 2157020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallographic and mass spectrometric characterisation of eIF4E with N7-alkylated cap derivatives.
    Brown CJ; McNae I; Fischer PM; Walkinshaw MD
    J Mol Biol; 2007 Sep; 372(1):7-15. PubMed ID: 17631896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.