These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 10600381)
1. Structural analysis of an RNase T1 variant with an altered guanine binding segment. Höschler K; Hoier H; Hubner B; Saenger W; Orth P; Hahn U J Mol Biol; 1999 Dec; 294(5):1231-8. PubMed ID: 10600381 [TBL] [Abstract][Full Text] [Related]
2. Crystal structures of ribonuclease F1 of Fusarium moniliforme in its free form and in complex with 2'GMP. Vassylyev DG; Katayanagi K; Ishikawa K; Tsujimoto-Hirano M; Danno M; Pähler A; Matsumoto O; Matsushima M; Yoshida H; Morikawa K J Mol Biol; 1993 Apr; 230(3):979-96. PubMed ID: 8386773 [TBL] [Abstract][Full Text] [Related]
3. RNase T1 variant RV cleaves single-stranded RNA after purines due to specific recognition by the Asn46 side chain amide. Czaja R; Struhalla M; Höschler K; Saenger W; Sträter N; Hahn U Biochemistry; 2004 Mar; 43(10):2854-62. PubMed ID: 15005620 [TBL] [Abstract][Full Text] [Related]
4. Crystal structures of the ribonuclease MC1 mutants N71T and N71S in complex with 5'-GMP: structural basis for alterations in substrate specificity. Numata T; Suzuki A; Kakuta Y; Kimura K; Yao M; Tanaka I; Yoshida Y; Ueda T; Kimura M Biochemistry; 2003 May; 42(18):5270-8. PubMed ID: 12731868 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure of ribonuclease T1 carboxymethylated at Glu58 in complex with 2'-GMP. Ishikawa K; Suzuki E; Tanokura M; Takahashi K Biochemistry; 1996 Jun; 35(25):8329-34. PubMed ID: 8679590 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional structure of ribonuclease T1 complexed with an isosteric phosphonate substrate analogue of GpU: alternate substrate binding modes and catalysis. Arni RK; Watanabe L; Ward RJ; Kreitman RJ; Kumar K; Walz FG Biochemistry; 1999 Feb; 38(8):2452-61. PubMed ID: 10029539 [TBL] [Abstract][Full Text] [Related]
8. Modification of ribonuclease T1 specificity by random mutagenesis of the substrate binding segment. Hubner B; Haensler M; Hahn U Biochemistry; 1999 Jan; 38(4):1371-6. PubMed ID: 9931000 [TBL] [Abstract][Full Text] [Related]
9. Structures of free and complexed forms of Escherichia coli xanthine-guanine phosphoribosyltransferase. Vos S; Parry RJ; Burns MR; de Jersey J; Martin JL J Mol Biol; 1998 Oct; 282(4):875-89. PubMed ID: 9743633 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of the purine nucleoside phosphorylase (PNP) from Cellulomonas sp. and its implication for the mechanism of trimeric PNPs. Tebbe J; Bzowska A; Wielgus-Kutrowska B; Schröder W; Kazimierczuk Z; Shugar D; Saenger W; Koellner G J Mol Biol; 1999 Dec; 294(5):1239-55. PubMed ID: 10600382 [TBL] [Abstract][Full Text] [Related]
11. Analysis of internal motions of RNase T1 complexed with a productive substrate involving 15N NMR relaxation measurements. Yoshida Y; Tanaka M; Ohkuri T; Tanaka Y; Imoto T; Ueda T J Biochem; 2006 Jul; 140(1):43-8. PubMed ID: 16877767 [TBL] [Abstract][Full Text] [Related]
12. Molecular basis for nucleotide-binding specificity: role of the exocyclic amino group "N2" in recognition by a guanylyl-ribonuclease. Schrift GL; Waldron TT; Timmons MA; Ramaswamy S; Kearney WR; Murphy KP J Mol Biol; 2006 Jan; 355(1):72-84. PubMed ID: 16300786 [TBL] [Abstract][Full Text] [Related]
13. Purine activity of RNase T1RV is further improved by substitution of Trp59 by tyrosine. Czaja R; Perbandt M; Betzel C; Hahn U Biochem Biophys Res Commun; 2005 Oct; 336(3):882-9. PubMed ID: 16157302 [TBL] [Abstract][Full Text] [Related]
14. Crystallographic study of mechanism of ribonuclease T1-catalysed specific RNA hydrolysis. Heinemann U; Saenger W J Biomol Struct Dyn; 1983 Oct; 1(2):523-38. PubMed ID: 6086061 [TBL] [Abstract][Full Text] [Related]
15. Molecular dynamics simulations of ribonuclease T1: comparison of the free enzyme and the 2' GMP-enzyme complex. MacKerell AD; Nilsson L; Rigler R; Heinemann U; Saenger W Proteins; 1989; 6(1):20-31. PubMed ID: 2558378 [TBL] [Abstract][Full Text] [Related]
16. Molecular basis of the recognition process: hydrogen-bonding patterns in the guanine primary recognition site of ribonuclease T1. Gu J; Wang J; Leszczynski J J Phys Chem B; 2006 Jul; 110(27):13590-6. PubMed ID: 16821886 [TBL] [Abstract][Full Text] [Related]
17. Addressing the challenge of changing the specificity of RNase T1 with rational and evolutionary approaches. Struhalla M; Czaja R; Hahn U Chembiochem; 2004 Feb; 5(2):200-5. PubMed ID: 14760741 [TBL] [Abstract][Full Text] [Related]
18. Site specific point mutation changes specificity: a molecular modeling study by free energy simulations and enzyme kinetics of the thermodynamics in ribonuclease T1 substrate interactions. Elofsson A; Kulinski T; Rigler R; Nilsson L Proteins; 1993 Oct; 17(2):161-75. PubMed ID: 8265564 [TBL] [Abstract][Full Text] [Related]
19. Calculation of the relative binding free energy of 2'GMP and 2'AMP to ribonuclease T1 using molecular dynamics/free energy perturbation approaches. Hirono S; Kollman PA J Mol Biol; 1990 Mar; 212(1):197-209. PubMed ID: 2157020 [TBL] [Abstract][Full Text] [Related]
20. Crystallographic and mass spectrometric characterisation of eIF4E with N7-alkylated cap derivatives. Brown CJ; McNae I; Fischer PM; Walkinshaw MD J Mol Biol; 2007 Sep; 372(1):7-15. PubMed ID: 17631896 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]