These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 10600418)

  • 1. Accurate high-speed spatial normalization using an octree method.
    Kochunov PV; Lancaster JL; Fox PT
    Neuroimage; 1999 Dec; 10(6):724-37. PubMed ID: 10600418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of octree regional spatial normalization method for regional anatomical matching.
    Kochunov P; Lancaster J; Thompson P; Boyer A; Hardies J; Fox P
    Hum Brain Mapp; 2000 Nov; 11(3):193-206. PubMed ID: 11098797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An optimized individual target brain in the Talairach coordinate system.
    Kochunov P; Lancaster J; Thompson P; Toga AW; Brewer P; Hardies J; Fox P
    Neuroimage; 2002 Oct; 17(2):922-7. PubMed ID: 12377166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic segmentation of magnetic resonance images using a decision tree with spatial information.
    Chao WH; Chen YY; Lin SH; Shih YY; Tsang S
    Comput Med Imaging Graph; 2009 Mar; 33(2):111-21. PubMed ID: 19097854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning and comparing spatial normalization methods.
    Robbins S; Evans AC; Collins DL; Whitesides S
    Med Image Anal; 2004 Sep; 8(3):311-23. PubMed ID: 15450225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring temporal morphological changes robustly in brain MR images via 4-dimensional template warping.
    Shen D; Davatzikos C
    Neuroimage; 2004 Apr; 21(4):1508-17. PubMed ID: 15050575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume.
    Buckner RL; Head D; Parker J; Fotenos AF; Marcus D; Morris JC; Snyder AZ
    Neuroimage; 2004 Oct; 23(2):724-38. PubMed ID: 15488422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volumetric segmentation of brain images using parallel genetic algorithms.
    Fan Y; Jiang T; Evans DJ
    IEEE Trans Med Imaging; 2002 Aug; 21(8):904-9. PubMed ID: 12472263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Registration of 3-D intraoperative MR images of the brain using a finite-element biomechanical model.
    Ferrant M; Nabavi A; Macq B; Jolesz FA; Kikinis R; Warfield SK
    IEEE Trans Med Imaging; 2001 Dec; 20(12):1384-97. PubMed ID: 11811838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The creation of a brain atlas for image guided neurosurgery using serial histological data.
    Chakravarty MM; Bertrand G; Hodge CP; Sadikot AF; Collins DL
    Neuroimage; 2006 Apr; 30(2):359-76. PubMed ID: 16406816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atlas-based anatomic labeling in neurodegenerative disease via structure-driven atlas warping.
    Meier DS; Fisher E
    J Neuroimaging; 2005 Jan; 15(1):16-26. PubMed ID: 15574570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-dimensional spatial normalization of diffusion tensor images improves the detection of white matter differences: an example study using amyotrophic lateral sclerosis.
    Zhang H; Avants BB; Yushkevich PA; Woo JH; Wang S; McCluskey LF; Elman LB; Melhem ER; Gee JC
    IEEE Trans Med Imaging; 2007 Nov; 26(11):1585-97. PubMed ID: 18041273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification of anatomical structures in MR brain images using fuzzy parameters.
    Algorri ME; Flores-Mangas F
    IEEE Trans Biomed Eng; 2004 Sep; 51(9):1599-608. PubMed ID: 15376508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unifying framework for multimodal brain MRI segmentation based on Hidden Markov Chains.
    Bricq S; Collet Ch; Armspach JP
    Med Image Anal; 2008 Dec; 12(6):639-52. PubMed ID: 18440268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A neonatal atlas template for spatial normalization of whole-brain magnetic resonance images of newborns: preliminary results.
    Kazemi K; Moghaddam HA; Grebe R; Gondry-Jouet C; Wallois F
    Neuroimage; 2007 Aug; 37(2):463-73. PubMed ID: 17560795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A physics-based coordinate transformation for 3-D image matching.
    Davis MH; Khotanzad A; Flamig DP; Harms SE
    IEEE Trans Med Imaging; 1997 Jun; 16(3):317-28. PubMed ID: 9184894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An accurate and efficient bayesian method for automatic segmentation of brain MRI.
    Marroquin JL; Vemuri BC; Botello S; Calderon F; Fernandez-Bouzas A
    IEEE Trans Med Imaging; 2002 Aug; 21(8):934-45. PubMed ID: 12472266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cross validation study of deep brain stimulation targeting: from experts to atlas-based, segmentation-based and automatic registration algorithms.
    Castro FJ; Pollo C; Meuli R; Maeder P; Cuisenaire O; Cuadra MB; Villemure JG; Thiran JP
    IEEE Trans Med Imaging; 2006 Nov; 25(11):1440-50. PubMed ID: 17117773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive elastic segmentation of brain MRI via shape-model-guided evolutionary programming.
    Pitiot A; Toga AW; Thompson PM
    IEEE Trans Med Imaging; 2002 Aug; 21(8):910-23. PubMed ID: 12472264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A spatially unbiased atlas template of the human cerebellum.
    Diedrichsen J
    Neuroimage; 2006 Oct; 33(1):127-38. PubMed ID: 16904911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.