These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 10600546)

  • 1. Chloroplast chaperonins: evidence for heterogeneous assembly of alpha and beta Cpn60 polypeptides into a chaperonin oligomer.
    Nishio K; Hirohashi T; Nakai M
    Biochem Biophys Res Commun; 1999 Dec; 266(2):584-7. PubMed ID: 10600546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural insight into the cooperation of chloroplast chaperonin subunits.
    Zhang S; Zhou H; Yu F; Bai C; Zhao Q; He J; Liu C
    BMC Biol; 2016 Apr; 14():29. PubMed ID: 27072913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protomer Roles in Chloroplast Chaperonin Assembly and Function.
    Bai C; Guo P; Zhao Q; Lv Z; Zhang S; Gao F; Gao L; Wang Y; Tian Z; Wang J; Yang F; Liu C
    Mol Plant; 2015 Oct; 8(10):1478-92. PubMed ID: 26057234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mycobacterium tuberculosis GroEL homologues unusually exist as lower oligomers and retain the ability to suppress aggregation of substrate proteins.
    Qamra R; Srinivas V; Mande SC
    J Mol Biol; 2004 Sep; 342(2):605-17. PubMed ID: 15327959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinach chloroplast cpn21 co-chaperonin possesses two functional domains fused together in a toroidal structure and exhibits nucleotide-dependent binding to plastid chaperonin 60.
    Baneyx F; Bertsch U; Kalbach CE; van der Vies SM; Soll J; Gatenby AA
    J Biol Chem; 1995 May; 270(18):10695-702. PubMed ID: 7738007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TCP34, a nuclear-encoded response regulator-like TPR protein of higher plant chloroplasts.
    Weber P; Fulgosi H; Piven I; Müller L; Krupinska K; Duong VH; Herrmann RG; Sokolenko A
    J Mol Biol; 2006 Mar; 357(2):535-49. PubMed ID: 16438983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional divergence of chloroplast Cpn60α subunits during Arabidopsis embryo development.
    Ke X; Zou W; Ren Y; Wang Z; Li J; Wu X; Zhao J
    PLoS Genet; 2017 Sep; 13(9):e1007036. PubMed ID: 28961247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effects of co-chaperonin homologs on cpn60 oligomers.
    Bonshtien AL; Parnas A; Sharkia R; Niv A; Mizrahi I; Azem A; Weiss C
    Cell Stress Chaperones; 2009 Sep; 14(5):509-19. PubMed ID: 19224397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the oligomeric state of chloroplast chaperonin 10 and chaperonin 20.
    Sharkia R; Bonshtien AL; Mizrahi I; Weiss C; Niv A; Lustig A; Viitanen PV; Azem A
    Biochim Biophys Acta; 2003 Sep; 1651(1-2):76-84. PubMed ID: 14499591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstitution of higher plant chloroplast chaperonin 60 tetradecamers active in protein folding.
    Dickson R; Weiss C; Howard RJ; Alldrick SP; Ellis RJ; Lorimer G; Azem A; Viitanen PV
    J Biol Chem; 2000 Apr; 275(16):11829-35. PubMed ID: 10766808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Significance of the N-terminal domain for the function of chloroplast cpn20 chaperonin.
    Bonshtien AL; Weiss C; Vitlin A; Niv A; Lorimer GH; Azem A
    J Biol Chem; 2007 Feb; 282(7):4463-4469. PubMed ID: 17178727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Archaeal group II chaperonin mediates protein folding in the cis-cavity without a detachable GroES-like co-chaperonin.
    Yoshida T; Kawaguchi R; Taguchi H; Yoshida M; Yasunaga T; Wakabayashi T; Yohda M; Maruyama T
    J Mol Biol; 2002 Jan; 315(1):73-85. PubMed ID: 11771967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chloroplasts have a novel Cpn10 in addition to Cpn20 as co-chaperonins in Arabidopsis thaliana.
    Koumoto Y; Shimada T; Kondo M; Hara-Nishimura I; Nishimura M
    J Biol Chem; 2001 Aug; 276(32):29688-94. PubMed ID: 11402030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional consequences of single:double ring transitions in chaperonins: life in the cold.
    Ferrer M; Lünsdorf H; Chernikova TN; Yakimov M; Timmis KN; Golyshin PN
    Mol Microbiol; 2004 Jul; 53(1):167-82. PubMed ID: 15225312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The plastid chaperonin.
    Hemmingsen SM
    Semin Cell Biol; 1990 Feb; 1(1):47-54. PubMed ID: 1983270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The substrate recognition mechanisms in chaperonins.
    Gómez-Puertas P; Martín-Benito J; Carrascosa JL; Willison KR; Valpuesta JM
    J Mol Recognit; 2004; 17(2):85-94. PubMed ID: 15027029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brassica napus plastid and mitochondrial chaperonin-60 proteins contain multiple distinct polypeptides.
    Cloney LP; Bekkaoui DR; Feist GL; Lane WS; Hemmingsen SM
    Plant Physiol; 1994 May; 105(1):233-41. PubMed ID: 7913238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hetero-oligomeric CPN60 resembles highly symmetric group-I chaperonin structure revealed by Cryo-EM.
    Zhao Q; Zhang X; Sommer F; Ta N; Wang N; Schroda M; Cong Y; Liu C
    Plant J; 2019 Jun; 98(5):798-812. PubMed ID: 30735603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and characterization of a testis-specific isoform of a chaperonin in a moth, Heliothis virescens.
    Miller SG; Leclerc RF; Erdos GW
    J Mol Biol; 1990 Jul; 214(2):407-22. PubMed ID: 1974308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification, characterization, and DNA sequence of a functional "double" groES-like chaperonin from chloroplasts of higher plants.
    Bertsch U; Soll J; Seetharam R; Viitanen PV
    Proc Natl Acad Sci U S A; 1992 Sep; 89(18):8696-700. PubMed ID: 1356267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.