BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 10600656)

  • 1. Influence of muscle temperature on the contractile properties of the quadriceps muscle in humans with spinal cord injury.
    Gerrits HL; de Haan A; Hopman MT; van der Woude LH; Sargeant AJ
    Clin Sci (Lond); 2000 Jan; 98(1):31-8. PubMed ID: 10600656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contractile properties and the force-frequency relationship of the paralyzed human quadriceps femoris muscle.
    Scott WB; Lee SC; Johnston TE; Binkley J; Binder-Macleod SA
    Phys Ther; 2006 Jun; 86(6):788-99. PubMed ID: 16737404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered contractile properties of the quadriceps muscle in people with spinal cord injury following functional electrical stimulated cycle training.
    Gerrits HL; de Haan A; Sargeant AJ; Dallmeijer A; Hopman MT
    Spinal Cord; 2000 Apr; 38(4):214-23. PubMed ID: 10822391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reproducibility of contractile properties of the human paralysed and non-paralysed quadriceps muscle.
    Gerrits HL; Hopman MT; Sargeant AJ; de Haan A
    Clin Physiol; 2001 Jan; 21(1):105-13. PubMed ID: 11168304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reducing muscle fatigue due to functional electrical stimulation using random modulation of stimulation parameters.
    Thrasher A; Graham GM; Popovic MR
    Artif Organs; 2005 Jun; 29(6):453-8. PubMed ID: 15926981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatigue of paralyzed and control thenar muscles induced by variable or constant frequency stimulation.
    Thomas CK; Griffin L; Godfrey S; Ribot-Ciscar E; Butler JE
    J Neurophysiol; 2003 Apr; 89(4):2055-64. PubMed ID: 12611940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of electrical stimulation pattern on the force responses of paralyzed human quadriceps muscles.
    Scott WB; Lee SC; Johnston TE; Binkley J; Binder-Macleod SA
    Muscle Nerve; 2007 Apr; 35(4):471-8. PubMed ID: 17212347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in contractile properties of motor units of the rat medial gastrocnemius muscle after spinal cord transection.
    Celichowski J; Mrówczyński W; Krutki P; Górska T; Majczyński H; Sławińska U
    Exp Physiol; 2006 Sep; 91(5):887-95. PubMed ID: 16728457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short-term immobilization after eccentric exercise. Part I: contractile properties.
    Sayers SP; Peters BT; Knight CA; Urso ML; Parkington J; Clarkson PM
    Med Sci Sports Exerc; 2003 May; 35(5):753-61. PubMed ID: 12750584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle contractile properties in children with spastic diplegia.
    Tammik K; Matlep M; Ereline J; Gapeyeva H; Pääsuke M
    Brain Dev; 2007 Oct; 29(9):553-8. PubMed ID: 17418991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term intensive electrically stimulated cycling by spinal cord-injured people: effect on muscle properties and their relation to power output.
    Duffell LD; Donaldson Nde N; Perkins TA; Rushton DN; Hunt KJ; Kakebeeke TH; Newham DJ
    Muscle Nerve; 2008 Oct; 38(4):1304-11. PubMed ID: 18816613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skeletal muscle contractility is preserved in COPD patients with normal fat-free mass.
    Degens H; Sanchez Horneros JM; Heijdra YF; Dekhuijzen PN; Hopman MT
    Acta Physiol Scand; 2005 Jul; 184(3):235-42. PubMed ID: 15954991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of knee joint angle on muscle properties of paralyzed and nonparalyzed human knee extensors.
    Gerrits KH; Maganaris CN; Reeves ND; Sargeant AJ; Jones DA; de Haan A
    Muscle Nerve; 2005 Jul; 32(1):73-80. PubMed ID: 15795891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contractile properties of knee-extensors in one single family with nemaline myopathy: central and peripheral aspects of muscle activation.
    Gerrits K; Pauw-Gommans I; van Engelen B; de Haan A
    Clin Physiol Funct Imaging; 2007 Jul; 27(4):217-24. PubMed ID: 17564670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Twitch and tetanic properties of human thenar motor units paralyzed by chronic spinal cord injury.
    Häger-Ross CK; Klein CS; Thomas CK
    J Neurophysiol; 2006 Jul; 96(1):165-74. PubMed ID: 16611836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of ageing in spinal cord injured humans on the blood pressure and heart rate responses during fatiguing isometric exercise.
    Petrofsky JS; Laymon M
    Eur J Appl Physiol; 2002 Apr; 86(6):479-86. PubMed ID: 11944094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The length-tension relationship of human dorsiflexor and plantarflexor muscles after spinal cord injury.
    Pelletier CA; Hicks AL
    Spinal Cord; 2010 Mar; 48(3):202-6. PubMed ID: 19721452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mathematical model that predicts isometric muscle forces for individuals with spinal cord injuries.
    Ding J; Lee SC; Johnston TE; Wexler AS; Scott WB; Binder-Macleod SA
    Muscle Nerve; 2005 Jun; 31(6):702-12. PubMed ID: 15742371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic CLC-1 chloride channel deficiency modifies diaphragm muscle isometric contractile properties.
    van Lunteren E; Moyer M; Pollarine J
    Respir Physiol Neurobiol; 2007 Mar; 155(3):220-6. PubMed ID: 16959550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peak power of muscles injured by lengthening contractions.
    Widrick JJ; Barker T
    Muscle Nerve; 2006 Oct; 34(4):470-7. PubMed ID: 16810694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.