These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 10600716)

  • 1. Model systems for redox cofactor activity.
    Rotello VM
    Curr Opin Chem Biol; 1999 Dec; 3(6):747-51. PubMed ID: 10600716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrroloquinoline quinone: a new redox cofactor in eukaryotic enzymes.
    Hartmann C; Klinman JP
    Biofactors; 1988 Jan; 1(1):41-9. PubMed ID: 2855582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel cofactor derivatives and cofactor-based models.
    Mishra PK; Drueckhammer DG
    Curr Opin Chem Biol; 1998 Dec; 2(6):758-65. PubMed ID: 9914186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering redox balance through cofactor systems.
    Chen X; Li S; Liu L
    Trends Biotechnol; 2014 Jun; 32(6):337-43. PubMed ID: 24794722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aromatic stacking interactions in flavin model systems.
    Nandwana V; Samuel I; Cooke G; Rotello VM
    Acc Chem Res; 2013 Apr; 46(4):1000-9. PubMed ID: 23163808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of the topa quinone cofactor in bacterial monoamine oxidase by cupric ion-dependent autooxidation of a specific tyrosyl residue.
    Matsuzaki R; Fukui T; Sato H; Ozaki Y; Tanizawa K
    FEBS Lett; 1994 Sep; 351(3):360-4. PubMed ID: 8082796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of glutamate-59 hydrogen bonded to N(3)H of the flavin mononucleotide cofactor in the modulation of the redox potentials of the Clostridium beijerinckii flavodoxin. Glutamate-59 is not responsible for the pH dependency but contributes to the stabilization of the flavin semiquinone.
    Bradley LH; Swenson RP
    Biochemistry; 1999 Sep; 38(38):12377-86. PubMed ID: 10493805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the enzymatic formation, chemical features, and biological role of the flavin-N5-oxide.
    Saleem-Batcha R; Teufel R
    Curr Opin Chem Biol; 2018 Dec; 47():47-53. PubMed ID: 30165331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cofactor diversity in biological oxidations: implications and applications.
    Duine JA
    Chem Rec; 2001; 1(1):74-83. PubMed ID: 11893060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Are the redox properties of tetrahydrofolate cofactors utilized in folate-dependent reactions?
    Matthews RG
    Fed Proc; 1982 Jul; 41(9):2600-4. PubMed ID: 7044835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model studies on calcium-containing quinoprotein alcohol dehydrogenases. Catalytic role of Ca2+ for the oxidation of alcohols by coenzyme PQQ (4,5-dihydro-4,5-dioxo-1H-pyrrolo[2,3-f]quinoline-2, 7,9-tricarboxylic acid).
    Itoh S; Kawakami H; Fukuzumi S
    Biochemistry; 1998 May; 37(18):6562-71. PubMed ID: 9572874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox cofactor engineering in industrial microorganisms: strategies, recent applications and future directions.
    Liu J; Li H; Zhao G; Caiyin Q; Qiao J
    J Ind Microbiol Biotechnol; 2018 May; 45(5):313-327. PubMed ID: 29582241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray structures of two oxidation states of a flavin-nicotinamide biscoenzyme and models for flavin--nicotinamide interactions.
    Porter DJ; Bright HJ; Voet D
    Nature; 1977 Sep; 269(5625):213-7. PubMed ID: 145544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel dye-linked formaldehyde dehydrogenase with some properties indicating the presence of a protein-bound redox-active quinone cofactor.
    Klein CR; Kesseler FP; Perrei C; Frank J; Duine JA; Schwartz AC
    Biochem J; 1994 Jul; 301 ( Pt 1)(Pt 1):289-95. PubMed ID: 8037683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cofactor engineering for advancing chemical biotechnology.
    Wang Y; San KY; Bennett GN
    Curr Opin Biotechnol; 2013 Dec; 24(6):994-9. PubMed ID: 23611567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Chemical and functional properties of flavin coenzymes].
    Setoyama C; Miura R
    Nihon Rinsho; 1999 Oct; 57(10):2193-8. PubMed ID: 10540861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies for regeneration of nicotinamide coenzymes emphasizing self-sufficient closed-loop recycling systems.
    Hummel W; Gröger H
    J Biotechnol; 2014 Dec; 191():22-31. PubMed ID: 25102236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of aryl-nitroso compounds by pyridine and flavin coenzymes.
    Leskovac V; Svircević J; Trivić S; Popović M; Radulović M
    Int J Biochem; 1989; 21(8):825-34. PubMed ID: 2531098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quinoprotein-catalysed reactions.
    Anthony C
    Biochem J; 1996 Dec; 320 ( Pt 3)(Pt 3):697-711. PubMed ID: 9003352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quinoproteins: enzymes containing the quinonoid cofactor pyrroloquinoline quinone, topaquinone or tryptophan-tryptophan quinone.
    Duine JA
    Eur J Biochem; 1991 Sep; 200(2):271-84. PubMed ID: 1653700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.