These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 10600734)

  • 21. Observation of the full exciton and phonon fine structure in CdSe/CdS dot-in-rod heteronanocrystals.
    Granados Del Águila A; Jha B; Pietra F; Groeneveld E; de Mello Donegá C; Maan JC; Vanmaekelbergh D; Christianen PC
    ACS Nano; 2014 Jun; 8(6):5921-31. PubMed ID: 24861569
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoexcited electron and hole dynamics in semiconductor quantum dots: phonon-induced relaxation, dephasing, multiple exciton generation and recombination.
    Hyeon-Deuk K; Prezhdo OV
    J Phys Condens Matter; 2012 Sep; 24(36):363201. PubMed ID: 22906924
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of surface states on blinking characteristics of single colloidal CdSe-CdS/ZnS core-multishell quantum dot.
    Xu H; Brismar H; Fu Y
    J Colloid Interface Sci; 2017 Nov; 505():528-536. PubMed ID: 28645036
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of ligands in determining the exciton relaxation dynamics in semiconductor quantum dots.
    Peterson MD; Cass LC; Harris RD; Edme K; Sung K; Weiss EA
    Annu Rev Phys Chem; 2014; 65():317-39. PubMed ID: 24364916
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exciton Fine-Structure Splitting in Self-Assembled Lateral InAs/GaAs Quantum-Dot Molecular Structures.
    Fillipov S; Puttisong Y; Huang Y; Buyanova IA; Suraprapapich S; Tu CW; Chen WM
    ACS Nano; 2015 Jun; 9(6):5741-9. PubMed ID: 25965972
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiple Energy Exciton Shelves in Quantum-Dot-DNA Nanobioelectronics.
    Goodman SM; Singh V; Ribot JC; Chatterjee A; Nagpal P
    J Phys Chem Lett; 2014 Nov; 5(21):3909-13. PubMed ID: 26278768
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Luminescence properties and exciton dynamics of core-multi-shell semiconductor quantum dots leading to QLEDs.
    Mehata MS; Ratnesh RK
    Dalton Trans; 2019 Jun; 48(22):7619-7631. PubMed ID: 31070635
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Charge-transfer excitons at organic semiconductor surfaces and interfaces.
    Zhu XY; Yang Q; Muntwiler M
    Acc Chem Res; 2009 Nov; 42(11):1779-87. PubMed ID: 19378979
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient charge-carrier extraction from Ag₂S quantum dots prepared by the SILAR method for utilization of multiple exciton generation.
    Zhang X; Liu J; Johansson EM
    Nanoscale; 2015 Jan; 7(4):1454-62. PubMed ID: 25504257
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of heterojunction on exciton binding energy and electron-hole recombination probability in CdSe/ZnS quantum dots.
    Elward JM; Chakraborty A
    J Chem Theory Comput; 2015 Feb; 11(2):462-71. PubMed ID: 26580906
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using dark states for exciton storage in transition-metal dichalcogenides.
    Tseng F; Simsek E; Gunlycke D
    J Phys Condens Matter; 2016 Jan; 28(3):034005. PubMed ID: 26704568
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An all-optical quantum gate in a semiconductor quantum dot.
    Li X; Wu Y; Steel D; Gammon D; Stievater TH; Katzer DS; Park D; Piermarocchi C; Sham LJ
    Science; 2003 Aug; 301(5634):809-11. PubMed ID: 12907794
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Size-Dependent Exciton Formation Dynamics in Colloidal Silicon Quantum Dots.
    Bergren MR; Palomaki PK; Neale NR; Furtak TE; Beard MC
    ACS Nano; 2016 Feb; 10(2):2316-23. PubMed ID: 26811876
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Few-particle effects in semiconductor quantum dots: observation of multicharged excitons.
    Hartmann A; Ducommun Y; Kapon E; Hohenester U; Molinari E
    Phys Rev Lett; 2000 Jun; 84(24):5648-51. PubMed ID: 10991016
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single-exciton optical gain in semiconductor nanocrystals.
    Klimov VI; Ivanov SA; Nanda J; Achermann M; Bezel I; McGuire JA; Piryatinski A
    Nature; 2007 May; 447(7143):441-6. PubMed ID: 17522678
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hybridization of electronic states in quantum dots through photon emission.
    Karrai K; Warburton RJ; Schulhauser C; Högele A; Urbaszek B; McGhee EJ; Govorov AO; Garcia JM; Gerardot BD; Petroff PM
    Nature; 2004 Jan; 427(6970):135-8. PubMed ID: 14712271
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Superposition Principle in Auger Recombination of Charged and Neutral Multicarrier States in Semiconductor Quantum Dots.
    Wu K; Lim J; Klimov VI
    ACS Nano; 2017 Aug; 11(8):8437-8447. PubMed ID: 28723072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Large exciton binding energy, high photoluminescence quantum yield and improved photostability of organo-metal halide hybrid perovskite quantum dots grown on a mesoporous titanium dioxide template.
    Parveen S; Paul KK; Das R; Giri PK
    J Colloid Interface Sci; 2019 Mar; 539():619-633. PubMed ID: 30612025
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coulomb Mediated Hybridization of Excitons in Coupled Quantum Dots.
    Ardelt PL; Gawarecki K; Müller K; Waeber AM; Bechtold A; Oberhofer K; Daniels JM; Klotz F; Bichler M; Kuhn T; Krenner HJ; Machnikowski P; Finley JJ
    Phys Rev Lett; 2016 Feb; 116(7):077401. PubMed ID: 26943557
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exciton-spin memory with a semiconductor quantum dot molecule.
    Boyer de la Giroday A; Sköld N; Stevenson RM; Farrer I; Ritchie DA; Shields AJ
    Phys Rev Lett; 2011 May; 106(21):216802. PubMed ID: 21699327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.