BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 10600767)

  • 1. Actin filament organization is required for proper cAMP-dependent activation of CFTR.
    Prat AG; Cunningham CC; Jackson GR; Borkan SC; Wang Y; Ausiello DA; Cantiello HF
    Am J Physiol; 1999 Dec; 277(6):C1160-9. PubMed ID: 10600767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. cAMP-independent regulation of CFTR by the actin cytoskeleton.
    Prat AG; Xiao YF; Ausiello DA; Cantiello HF
    Am J Physiol; 1995 Jun; 268(6 Pt 1):C1552-61. PubMed ID: 7541942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the actin cytoskeleton in the regulation of the cystic fibrosis transmembrane conductance regulator.
    Cantiello HF
    Exp Physiol; 1996 May; 81(3):505-14. PubMed ID: 8737083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of actin filament organization in CFTR activation.
    Cantiello HF
    Pflugers Arch; 2001; 443 Suppl 1():S75-80. PubMed ID: 11845308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clusters of Cl- channels in CFTR-expressing Sf9 cells switch spontaneously between slow and fast gating modes.
    Larsen EH; Price EM; Gabriel SE; Stutts MJ; Boucher RC
    Pflugers Arch; 1996 Jul; 432(3):528-37. PubMed ID: 8766014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Both CFTR and outwardly rectifying chloride channels contribute to cAMP-stimulated whole cell chloride currents.
    Schwiebert EM; Flotte T; Cutting GR; Guggino WB
    Am J Physiol; 1994 May; 266(5 Pt 1):C1464-77. PubMed ID: 7515570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The actin filament disrupter cytochalasin D activates the recombinant cystic fibrosis transmembrane conductance regulator Cl- channel in mouse 3T3 fibroblasts.
    Fischer H; Illek B; Machen TE
    J Physiol; 1995 Dec; 489 ( Pt 3)(Pt 3):745-54. PubMed ID: 8788939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CFTR in Calu-3 human airway cells: channel properties and role in cAMP-activated Cl- conductance.
    Haws C; Finkbeiner WE; Widdicombe JH; Wine JJ
    Am J Physiol; 1994 May; 266(5 Pt 1):L502-12. PubMed ID: 7515579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CFTR channels expressed in CHO cells do not have detectable ATP conductance.
    Grygorczyk R; Tabcharani JA; Hanrahan JW
    J Membr Biol; 1996 May; 151(2):139-48. PubMed ID: 8661502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA-regulated apical chloride channels in cortical collecting duct.
    Lu M; Dong K; Egan ME; Giebisch GH; Boulpaep EL; Hebert SC
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):6082-7. PubMed ID: 20231442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. cAMP-activated anion conductance is associated with expression of CFTR in neonatal mouse cardiac myocytes.
    Lader AS; Wang Y; Jackson GR; Borkan SC; Cantiello HF
    Am J Physiol Cell Physiol; 2000 Feb; 278(2):C436-50. PubMed ID: 10666040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the gating behaviour of human and murine cystic fibrosis transmembrane conductance regulator Cl- channels expressed in mammalian cells.
    Lansdell KA; Delaney SJ; Lunn DP; Thomson SA; Sheppard DN; Wainwright BJ
    J Physiol; 1998 Apr; 508 ( Pt 2)(Pt 2):379-92. PubMed ID: 9508803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyridine nucleotide redox potential modulates cystic fibrosis transmembrane conductance regulator Cl- conductance.
    Stutts MJ; Gabriel SE; Price EM; Sarkadi B; Olsen JC; Boucher RC
    J Biol Chem; 1994 Mar; 269(12):8667-74. PubMed ID: 7510695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of cAMP-dependent C1- currents in guinea-pig paneth cells without relevant evidence for CFTR expression.
    Tsumura T; Hazama A; Miyoshi T; Ueda S; Okada Y
    J Physiol; 1998 Nov; 512 ( Pt 3)(Pt 3):765-77. PubMed ID: 9769420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cystic fibrosis transmembrane conductance regulator is a dual ATP and chloride channel.
    Reisin IL; Prat AG; Abraham EH; Amara JF; Gregory RJ; Ausiello DA; Cantiello HF
    J Biol Chem; 1994 Aug; 269(32):20584-91. PubMed ID: 7519611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. cAMP-stimulated ion currents in Xenopus oocytes expressing CFTR cRNA.
    Cunningham SA; Worrell RT; Benos DJ; Frizzell RA
    Am J Physiol; 1992 Mar; 262(3 Pt 1):C783-8. PubMed ID: 1372482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of heterologously expressed cystic fibrosis transmembrane conductance regulator Cl- channels by non-sulphonylurea hypoglycaemic agents.
    Cai Z; Lansdell KA; Sheppard DN
    Br J Pharmacol; 1999 Sep; 128(1):108-18. PubMed ID: 10498841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. External ATP and its analogs activate the cystic fibrosis transmembrane conductance regulator by a cyclic AMP-independent mechanism.
    Cantiello HF; Prat AG; Reisin IL; Ercole LB; Abraham EH; Amara JF; Gregory RJ; Ausiello DA
    J Biol Chem; 1994 Apr; 269(15):11224-32. PubMed ID: 7512560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of CFTR controls cAMP-dependent activation of epithelial K+ currents.
    Loussouarn G; Demolombe S; Mohammad-Panah R; Escande D; BarĂ³ I
    Am J Physiol; 1996 Nov; 271(5 Pt 1):C1565-73. PubMed ID: 8944640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The formation of the cAMP/protein kinase A-dependent annexin 2-S100A10 complex with cystic fibrosis conductance regulator protein (CFTR) regulates CFTR channel function.
    Borthwick LA; McGaw J; Conner G; Taylor CJ; Gerke V; Mehta A; Robson L; Muimo R
    Mol Biol Cell; 2007 Sep; 18(9):3388-97. PubMed ID: 17581860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.