BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 10600878)

  • 1. Fluid absorption related to ion transport in human airway epithelial spheroids.
    Pedersen PS; Holstein-Rathlou NH; Larsen PL; Qvortrup K; Frederiksen O
    Am J Physiol; 1999 Dec; 277(6):L1096-103. PubMed ID: 10600878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion transport in epithelial spheroids derived from human airway cells.
    Pedersen PS; Frederiksen O; Holstein-Rathlou NH; Larsen PL; Qvortrup K
    Am J Physiol; 1999 Jan; 276(1):L75-80. PubMed ID: 9887058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of amiloride-sensitive epithelial Na(+) absorption by extracellular nucleotides in human normal and cystic fibrosis airways.
    Mall M; Wissner A; Gonska T; Calenborn D; Kuehr J; Brandis M; Kunzelmann K
    Am J Respir Cell Mol Biol; 2000 Dec; 23(6):755-61. PubMed ID: 11104728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for reduced Cl- and increased Na+ permeability in cystic fibrosis human primary cell cultures.
    Boucher RC; Cotton CU; Gatzy JT; Knowles MR; Yankaskas JR
    J Physiol; 1988 Nov; 405():77-103. PubMed ID: 3255805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defective fluid transport by cystic fibrosis airway epithelia.
    Smith JJ; Karp PH; Welsh MJ
    J Clin Invest; 1994 Mar; 93(3):1307-11. PubMed ID: 8132771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo analysis of fluid transport in cystic fibrosis airway epithelia of bronchial xenografts.
    Zhang Y; Yankaskas J; Wilson J; Engelhardt JF
    Am J Physiol; 1996 May; 270(5 Pt 1):C1326-35. PubMed ID: 8967432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Benzamil and mucoviscidosis. Primary culture of nasal mucosa as an electrophysiologic in vitro model].
    Blank U; Glanz H; Eistert B; Fryen A; Lindemann H; Hüls G; Clauss W; Weber WM
    HNO; 1996 Apr; 44(4):172-7. PubMed ID: 8655347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation of aquaporin-5 and transepithelial water permeability in human airway epithelium by hyperosmotic stress.
    Pedersen PS; Braunstein TH; Jørgensen A; Larsen PL; Holstein-Rathlou NH; Frederiksen O
    Pflugers Arch; 2007 Mar; 453(6):777-85. PubMed ID: 17043812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water permeability in human airway epithelium.
    Pedersen PS; Procida K; Larsen PL; Holstein-Rathlou NH; Frederiksen O
    Pflugers Arch; 2005 Dec; 451(3):464-73. PubMed ID: 16170523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-genomic estrogen regulation of ion transport and airway surface liquid dynamics in cystic fibrosis bronchial epithelium.
    Saint-Criq V; Kim SH; Katzenellenbogen JA; Harvey BJ
    PLoS One; 2013; 8(11):e78593. PubMed ID: 24223826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion and fluid transport properties of small airways in cystic fibrosis.
    Blouquit S; Regnier A; Dannhoffer L; Fermanian C; Naline E; Boucher R; Chinet T
    Am J Respir Crit Care Med; 2006 Aug; 174(3):299-305. PubMed ID: 16645176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcellular sodium transport in cultured cystic fibrosis human nasal epithelium.
    Willumsen NJ; Boucher RC
    Am J Physiol; 1991 Aug; 261(2 Pt 1):C332-41. PubMed ID: 1872375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cystic fibrosis and non-cystic-fibrosis human nasal epithelium show analogous Na+ absorption and reversible block by phenamil.
    Blank U; Rückes C; Clauss W; Hofmann T; Lindemann H; Münker G; Weber W
    Pflugers Arch; 1997 May; 434(1):19-24. PubMed ID: 9094252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osmotic water permeabilities of cultured, well-differentiated normal and cystic fibrosis airway epithelia.
    Matsui H; Davis CW; Tarran R; Boucher RC
    J Clin Invest; 2000 May; 105(10):1419-27. PubMed ID: 10811849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of apical hyperosmotic sodium challenge and amiloride on sodium transport in human bronchial epithelial cells from cystic fibrosis donors.
    Rasgado-Flores H; Krishna Mandava V; Siman H; Van Driessche W; Pilewski JM; Randell SH; Bridges RJ
    Am J Physiol Cell Physiol; 2013 Dec; 305(11):C1114-22. PubMed ID: 23986197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarized distribution of HCO3- transport in human normal and cystic fibrosis nasal epithelia.
    Paradiso AM; Coakley RD; Boucher RC
    J Physiol; 2003 Apr; 548(Pt 1):203-18. PubMed ID: 12562898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abnormal apical cell membrane in cystic fibrosis respiratory epithelium. An in vitro electrophysiologic analysis.
    Cotton CU; Stutts MJ; Knowles MR; Gatzy JT; Boucher RC
    J Clin Invest; 1987 Jan; 79(1):80-5. PubMed ID: 3793933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amiloride-insensitive nasal potential difference varies with the menstrual cycle in cystic fibrosis.
    Sweezey NB; Smith D; Corey M; Ellis L; Carpenter S; Tullis DE; Durie P; O'Brodovich HM
    Pediatr Pulmonol; 2007 Jun; 42(6):519-24. PubMed ID: 17469152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ENaC- and CFTR-dependent ion and fluid transport in human middle ear epithelial cells.
    Choi JY; Son EJ; Kim JL; Lee JH; Park HY; Kim SH; Song MH; Yoon JH
    Hear Res; 2006 Jan; 211(1-2):26-32. PubMed ID: 16226002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protocols for in vivo measurement of the ion transport defects in cystic fibrosis nasal epithelium.
    Middleton PG; Geddes DM; Alton EW
    Eur Respir J; 1994 Nov; 7(11):2050-6. PubMed ID: 7875281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.