These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 10600878)

  • 21. Shunt resistance and ion permeabilities in normal and cystic fibrosis airway epithelia.
    Willumsen NJ; Boucher RC
    Am J Physiol; 1989 May; 256(5 Pt 1):C1054-63. PubMed ID: 2719095
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitric oxide has no beneficial effects on ion transport defects in cystic fibrosis human nasal epithelium.
    Rückes-Nilges C; Lindemann H; Klimek T; Glanz H; Weber WM
    Pflugers Arch; 2000 Nov; 441(1):133-7. PubMed ID: 11205052
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The amiloride-inhibitable Na+ conductance is reduced by the cystic fibrosis transmembrane conductance regulator in normal but not in cystic fibrosis airways.
    Mall M; Bleich M; Greger R; Schreiber R; Kunzelmann K
    J Clin Invest; 1998 Jul; 102(1):15-21. PubMed ID: 9649552
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of sodium hyperabsorption in cultured cystic fibrosis nasal epithelium: a patch-clamp study.
    Chinet TC; Fullton JM; Yankaskas JR; Boucher RC; Stutts MJ
    Am J Physiol; 1994 Apr; 266(4 Pt 1):C1061-8. PubMed ID: 7513953
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluid and electrolyte transport by cultured human airway epithelia.
    Smith JJ; Welsh MJ
    J Clin Invest; 1993 Apr; 91(4):1590-7. PubMed ID: 8473502
    [TBL] [Abstract][Full Text] [Related]  

  • 26. N-acetylcysteine inhibits Na+ absorption across human nasal epithelial cells.
    Rochat T; Lacroix JS; Jornot L
    J Cell Physiol; 2004 Oct; 201(1):106-16. PubMed ID: 15281093
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Parallel improvement of sodium and chloride transport defects by miglustat (n-butyldeoxynojyrimicin) in cystic fibrosis epithelial cells.
    Noël S; Wilke M; Bot AG; De Jonge HR; Becq F
    J Pharmacol Exp Ther; 2008 Jun; 325(3):1016-23. PubMed ID: 18309088
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ion transport mechanisms in native rabbit nasal airway epithelium.
    Röpke M; Carstens S; Holm M; Frederiksen O
    Am J Physiol; 1996 Oct; 271(4 Pt 1):L637-45. PubMed ID: 8897912
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ion transport across CF and normal murine olfactory and ciliated epithelium.
    Grubb BR; Rogers TD; Boucher RC; Ostrowski LE
    Am J Physiol Cell Physiol; 2009 Jun; 296(6):C1301-9. PubMed ID: 19321738
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo nasal potential difference: techniques and protocols for assessing efficacy of gene transfer in cystic fibrosis.
    Knowles MR; Paradiso AM; Boucher RC
    Hum Gene Ther; 1995 Apr; 6(4):445-55. PubMed ID: 7542031
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of K(V)LQT1 in cyclic adenosine monophosphate-mediated Cl(-) secretion in human airway epithelia.
    Mall M; Wissner A; Schreiber R; Kuehr J; Seydewitz HH; Brandis M; Greger R; Kunzelmann K
    Am J Respir Cell Mol Biol; 2000 Sep; 23(3):283-9. PubMed ID: 10970817
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exercise inhibits epithelial sodium channels in patients with cystic fibrosis.
    Hebestreit A; Kersting U; Basler B; Jeschke R; Hebestreit H
    Am J Respir Crit Care Med; 2001 Aug; 164(3):443-6. PubMed ID: 11500347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of active ion transport across primary rabbit corneal epithelial cell layers (RCrECL) cultured at an air-interface.
    Chang-Lin JE; Kim KJ; Lee VH
    Exp Eye Res; 2005 Jun; 80(6):827-36. PubMed ID: 15939039
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activation of an apical Cl- conductance by Ca2+ ionophores in cystic fibrosis airway epithelia.
    Willumsen NJ; Boucher RC
    Am J Physiol; 1989 Feb; 256(2 Pt 1):C226-33. PubMed ID: 2465689
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Colonic and esophageal transepithelial potential difference in cystic fibrosis.
    Orlando RC; Powell DW; Croom RD; Berschneider HM; Boucher RC; Knowles MR
    Gastroenterology; 1989 Apr; 96(4):1041-8. PubMed ID: 2925051
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hepatocyte growth factor inhibits amiloride-sensitive Na(+) channel function in cystic fibrosis airway epithelium in vitro.
    Shen BQ; Widdicomb JH; Mrsny RJ
    Pulm Pharmacol Ther; 1999; 12(3):157-64. PubMed ID: 10419835
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of varying tonicity on nasal epithelial ion transport in cystic fibrosis.
    Davies MG; Geddes DM; Alton EW
    Am J Respir Crit Care Med; 2005 Apr; 171(7):760-3. PubMed ID: 15618459
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hypoxia reduces airway epithelial sodium transport in rats.
    Tomlinson LA; Carpenter TC; Baker EH; Bridges JB; Weil JV
    Am J Physiol; 1999 Nov; 277(5):L881-6. PubMed ID: 10564171
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modification of nasal membrane potential difference with inhaled amiloride and loperamide in the cystic fibrosis (CF) mouse.
    Ghosal S; Taylor CJ; McGaw J
    Thorax; 1996 Dec; 51(12):1229-32. PubMed ID: 8994520
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increased ion transport in cultured nasal polyp epithelial cells.
    Bernstein JM; Yankaskas JR
    Arch Otolaryngol Head Neck Surg; 1994 Sep; 120(9):993-6. PubMed ID: 8074828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.