BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 10600882)

  • 1. NADPH and heme redox modulate pulmonary artery relaxation and guanylate cyclase activation by NO.
    Gupte SA; Rupawalla T; Phillibert D; Wolin MS
    Am J Physiol; 1999 Dec; 277(6):L1124-32. PubMed ID: 10600882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of NO-elicited pulmonary artery relaxation and guanylate cyclase activation by NADH oxidase and SOD.
    Gupte SA; Rupawalla T; Mohazzab-H KM; Wolin MS
    Am J Physiol; 1999 May; 276(5):H1535-42. PubMed ID: 10330236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thiol oxidation inhibits nitric oxide-mediated pulmonary artery relaxation and guanylate cyclase stimulation.
    Mingone CJ; Gupte SA; Ali N; Oeckler RA; Wolin MS
    Am J Physiol Lung Cell Mol Physiol; 2006 Mar; 290(3):L549-57. PubMed ID: 16272175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A flavoprotein mechanism appears to prevent an oxygen-dependent inhibition of cGMP-associated nitric oxide-elicited relaxation of bovine coronary arteries.
    Iesaki T; Gupte SA; Wolin MS
    Circ Res; 1999 Nov; 85(11):1027-31. PubMed ID: 10571533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of pentose phosphate pathway-derived NADPH in hypoxic pulmonary vasoconstriction.
    Gupte SA; Okada T; McMurtry IF; Oka M
    Pulm Pharmacol Ther; 2006; 19(4):303-9. PubMed ID: 16203165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypoxia enhances a cGMP-independent nitric oxide relaxing mechanism in pulmonary arteries.
    Mingone CJ; Gupte SA; Iesaki T; Wolin MS
    Am J Physiol Lung Cell Mol Physiol; 2003 Aug; 285(2):L296-304. PubMed ID: 12691956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles for cytosolic NADPH redox in regulating pulmonary artery relaxation by thiol oxidation-elicited subunit dimerization of protein kinase G1α.
    Neo BH; Patel D; Kandhi S; Wolin MS
    Am J Physiol Heart Circ Physiol; 2013 Aug; 305(3):H330-43. PubMed ID: 23709600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo microdialysis study of a specific inhibitor of soluble guanylyl cyclase on the glutamate receptor/nitric oxide/cyclic GMP pathway.
    Fedele E; Jin Y; Varnier G; Raiteri M
    Br J Pharmacol; 1996 Oct; 119(3):590-4. PubMed ID: 8894183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one as a heme-site inhibitor of nitric oxide-sensitive guanylyl cyclase.
    Schrammel A; Behrends S; Schmidt K; Koesling D; Mayer B
    Mol Pharmacol; 1996 Jul; 50(1):1-5. PubMed ID: 8700100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigallocatechin-3-gallate relaxes the isolated bovine ophthalmic artery: involvement of phosphoinositide 3-kinase-Akt-nitric oxide/cGMP signalling pathway.
    Romano MR; Lograno MD
    Eur J Pharmacol; 2009 Apr; 608(1-3):48-53. PubMed ID: 19249297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential sensitivity among nitric oxide donors toward ODQ-mediated inhibition of vascular relaxation.
    Tseng CM; Tabrizi-Fard MA; Fung HL
    J Pharmacol Exp Ther; 2000 Feb; 292(2):737-42. PubMed ID: 10640313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles for redox mechanisms controlling protein kinase G in pulmonary and coronary artery responses to hypoxia.
    Neo BH; Kandhi S; Wolin MS
    Am J Physiol Heart Circ Physiol; 2011 Dec; 301(6):H2295-304. PubMed ID: 21926339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of guanylate cyclase stimulation by NO and bovine arterial relaxation to peroxynitrite and H2O2.
    Iesaki T; Gupte SA; Kaminski PM; Wolin MS
    Am J Physiol; 1999 Sep; 277(3):H978-85. PubMed ID: 10484419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel guanylyl cyclase inhibitor potently inhibits cyclic GMP accumulation in endothelial cells and relaxation of bovine pulmonary artery.
    Brunner F; Schmidt K; Nielsen EB; Mayer B
    J Pharmacol Exp Ther; 1996 Apr; 277(1):48-53. PubMed ID: 8613957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of NS 2028 as a specific inhibitor of soluble guanylyl cyclase.
    Olesen SP; Drejer J; Axelsson O; Moldt P; Bang L; Nielsen-Kudsk JE; Busse R; Mülsch A
    Br J Pharmacol; 1998 Jan; 123(2):299-309. PubMed ID: 9489619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NO-induced relaxation of labouring and non-labouring human myometrium is not mediated by cyclic GMP.
    Buxton IL; Kaiser RA; Malmquist NA; Tichenor S
    Br J Pharmacol; 2001 Sep; 134(1):206-14. PubMed ID: 11522613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Desensitization of the soluble guanylyl cyclase/cGMP pathway by lipopolysaccharide in rat isolated pulmonary artery but not aorta.
    El-Awady MS; Smirnov SV; Watson ML
    Br J Pharmacol; 2008 Dec; 155(8):1164-73. PubMed ID: 18806822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protoporphyrin IX generation from delta-aminolevulinic acid elicits pulmonary artery relaxation and soluble guanylate cyclase activation.
    Mingone CJ; Gupte SA; Chow JL; Ahmad M; Abraham NG; Wolin MS
    Am J Physiol Lung Cell Mol Physiol; 2006 Sep; 291(3):L337-44. PubMed ID: 16899710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Failure of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) to inhibit soluble guanylyl cyclase in rat ventricular cardiomyocytes.
    Wegener JW; Closs EI; Förstermann U; Nawrath H
    Br J Pharmacol; 1999 Jun; 127(3):693-700. PubMed ID: 10401560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The deactivation of soluble guanylyl cyclase by redox-active agents.
    Dierks EA; Burstyn JN
    Arch Biochem Biophys; 1998 Mar; 351(1):1-7. PubMed ID: 9500837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.