BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 10600900)

  • 21. Fine structure of the gill epithelium of the terrestrial mudskipper, Periophthalmodon schlosseri.
    Wilson JM; Kok TW; Randall DJ; Vogl WA; Ip KY
    Cell Tissue Res; 1999 Nov; 298(2):345-56. PubMed ID: 10571123
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A nose-to-nose comparison of the physiological and molecular responses of rainbow trout to high environmental ammonia in seawater versus freshwater.
    Wood CM; Nawata CM
    J Exp Biol; 2011 Nov; 214(Pt 21):3557-69. PubMed ID: 21993784
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in tissue free amino acid contents, branchial Na+/K+ -ATPase activity and bimodal breathing pattern in the freshwater climbing perch, Anabas testudineus (Bloch), during seawater acclimation.
    Chang EW; Loong AM; Wong WP; Chew SF; Wilson JM; Ip YK
    J Exp Zool A Ecol Genet Physiol; 2007 Dec; 307(12):708-23. PubMed ID: 17963240
    [TBL] [Abstract][Full Text] [Related]  

  • 24. K+ and NH4(+) modulate gill (Na+, K+)-ATPase activity in the blue crab, Callinectes ornatus: fine tuning of ammonia excretion.
    Garçon DP; Masui DC; Mantelatto FL; McNamara JC; Furriel RP; Leone FA
    Comp Biochem Physiol A Mol Integr Physiol; 2007 May; 147(1):145-55. PubMed ID: 17276114
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms of transepithelial ammonia excretion and luminal alkalinization in the gut of an intestinal air-breathing fish, Misgurnus anguilliacaudatus.
    Wilson JM; Moreira-Silva J; Delgado IL; Ebanks SC; Vijayan MM; Coimbra J; Grosell M
    J Exp Biol; 2013 Feb; 216(Pt 4):623-32. PubMed ID: 23077166
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Na
    Chen XL; Zhang B; Chng YR; Ong JLY; Chew SF; Wong WP; Lam SH; Ip YK
    Front Physiol; 2017; 8():880. PubMed ID: 29209224
    [TBL] [Abstract][Full Text] [Related]  

  • 27. (Uncommon) Mechanisms of Branchial Ammonia Excretion in the Common Carp (Cyprinus carpio) in Response to Environmentally Induced Metabolic Acidosis.
    Wright PA; Wood CM; Hiroi J; Wilson JM
    Physiol Biochem Zool; 2016; 89(1):26-40. PubMed ID: 27082522
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of high environmental ammonia on branchial ammonia excretion rates and tissue Rh-protein mRNA expression levels in seawater acclimated Dungeness crab Metacarcinus magister.
    Martin M; Fehsenfeld S; Sourial MM; Weihrauch D
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Oct; 160(2):267-77. PubMed ID: 21723408
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The snakehead Channa asiatica accumulates alanine during aerial exposure, but is incapable of sustaining locomotory activities on land through partial amino acid catabolism.
    Chew SF; Wong MY; Tam WL; Ip YK
    J Exp Biol; 2003 Feb; 206(Pt 4):693-704. PubMed ID: 12517987
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dining on the dead in the deep: Active NH
    Clifford AM; Wilkie MP; Edwards SL; Tresguerres M; Goss GG
    Acta Physiol (Oxf); 2022 Oct; 236(2):e13845. PubMed ID: 35620804
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modulation of Rh glycoproteins, ammonia excretion and Na+ fluxes in three freshwater teleosts when exposed chronically to high environmental ammonia.
    Sinha AK; Liew HJ; Nawata CM; Blust R; Wood CM; De Boeck G
    J Exp Biol; 2013 Aug; 216(Pt 15):2917-30. PubMed ID: 23661781
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The consequences of reversible gill remodelling on ammonia excretion in goldfish (Carassius auratus).
    Perry SF; Schwaiger T; Kumai Y; Tzaneva V; Braun MH
    J Exp Biol; 2010 Nov; 213(Pt 21):3656-65. PubMed ID: 20952613
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ammonia as a respiratory gas in water and air-breathing fishes.
    Randall DJ; Ip YK
    Respir Physiol Neurobiol; 2006 Nov; 154(1-2):216-25. PubMed ID: 16731054
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new paradigm for ammonia excretion in aquatic animals: role of Rhesus (Rh) glycoproteins.
    Wright PA; Wood CM
    J Exp Biol; 2009 Aug; 212(Pt 15):2303-12. PubMed ID: 19617422
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Marine (Taeniura lymma) and freshwater (Himantura signifer) elasmobranchs synthesize urea for osmotic water retention.
    Ip YK; Tam WL; Wong WP; Chew SF
    Physiol Biochem Zool; 2005; 78(4):610-9. PubMed ID: 15957115
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptomic evidence of adaptive tolerance to high environmental ammonia in mudskippers.
    You X; Chen J; Bian C; Yi Y; Ruan Z; Li J; Zhang X; Yu H; Xu J; Shi Q
    Genomics; 2018 Nov; 110(6):404-413. PubMed ID: 30261316
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Responses to reversed NH3 and NH4+ gradients in a teleost (Ictalurus punctatus), an elasmobranch (Raja erinacea), and a crustacean (Callinectes sapidus):evidence for NH4+/H+ exchange in the teleost and the elasmobranch.
    Cameron JN
    J Exp Zool; 1986 Aug; 239(2):183-95. PubMed ID: 3746231
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gross and fine anatomy of the respiratory vasculature of the mudskipper, Periophthalmodon schlosseri (Gobiidae: Oxudercinae).
    Gonzales TT; Katoh M; Ghaffar MA; Ishimatsu A
    J Morphol; 2011 May; 272(5):629-40. PubMed ID: 21344480
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Do amiloride and ouabain affect ammonia fluxes in perfused Carcinus gill epithelia?
    Lucu C; Devescovi M; Siebers D
    J Exp Zool; 1989 Jan; 249(1):1-5. PubMed ID: 2926354
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptations of a deep sea scavenger: high ammonia tolerance and active NH₄⁺ excretion by the Pacific hagfish (Eptatretus stoutii).
    Clifford AM; Goss GG; Wilkie MP
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Apr; 182():64-74. PubMed ID: 25499242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.