These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 10600914)

  • 1. Flow reduces the amplitude and increases the frequency of lymphatic vasomotion: role of endothelial prostanoids.
    Koller A; Mizuno R; Kaley G
    Am J Physiol; 1999 Dec; 277(6):R1683-9. PubMed ID: 10600914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the vasomotor activity of lymph microvessels by nitric oxide and prostaglandins.
    Mizuno R; Koller A; Kaley G
    Am J Physiol; 1998 Mar; 274(3):R790-6. PubMed ID: 9530247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myogenic responses of isolated lymphatics: modulation by endothelium.
    Mizuno R; Dörnyei G; Koller A; Kaley G
    Microcirculation; 1997 Dec; 4(4):413-20. PubMed ID: 9431509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow-induced responses in skeletal muscle venules: modulation by nitric oxide and prostaglandins.
    Koller A; Dörnyei G; Kaley G
    Am J Physiol; 1998 Sep; 275(3):H831-6. PubMed ID: 9724286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide and prostaglandins modulate pressure-induced myogenic responses of intramural coronary arterioles.
    Szekeres M; Nádasy GL; Kaley G; Koller A
    J Cardiovasc Pharmacol; 2004 Feb; 43(2):242-9. PubMed ID: 14716212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A High-Salt Diet Differentially Modulates Mechanical Activity of Afferent and Efferent Collecting Lymphatics in Murine Iliac Lymph Nodes.
    Mizuno R; Isshiki M; Ono N; Nishimoto M; Fujita T
    Lymphat Res Biol; 2015 Jun; 13(2):85-92. PubMed ID: 26091404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dilation of rat diaphragmatic arterioles by flow and hypoxia: roles of nitric oxide and prostaglandins.
    Ward ME
    J Appl Physiol (1985); 1999 May; 86(5):1644-50. PubMed ID: 10233130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct.
    Gashev AA; Davis MJ; Zawieja DC
    J Physiol; 2002 May; 540(Pt 3):1023-37. PubMed ID: 11986387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of indomethacin and N omega-nitro-L-arginine methyl ester on the pressure/flow relation in isolated perfused hindlimbs from pregnant and nonpregnant rats.
    Ahokas RA; Friedman SA; Sibai BM
    J Soc Gynecol Investig; 1997; 4(5):229-35. PubMed ID: 9360226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of the active lymph pump in bovine prenodal mesenteric lymphatics.
    Gashev AA; Wang W; Laine GA; Stewart RH; Zawieja DC
    Lymphat Res Biol; 2007; 5(2):71-9. PubMed ID: 17935475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence that the substance P-induced enhancement of pacemaking in lymphatics of the guinea-pig mesentery occurs through endothelial release of thromboxane A2.
    Rayner SE; Van Helden DF
    Br J Pharmacol; 1997 Aug; 121(8):1589-96. PubMed ID: 9283691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence that the ATP-induced increase in vasomotion of guinea-pig mesenteric lymphatics involves an endothelium-dependent release of thromboxane A2.
    Gao J; Zhao J; Rayner SE; Van Helden DF
    Br J Pharmacol; 1999 Aug; 127(7):1597-602. PubMed ID: 10455315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pressure-flow relationships in isolated sheep prenodal lymphatic vessels.
    Eisenhoffer J; Lee S; Johnston MG
    Am J Physiol; 1994 Sep; 267(3 Pt 2):H938-43. PubMed ID: 8092298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between nitric oxide and prostanoids in arterioles of rat cremaster muscle in vivo.
    Laemmel E; Bonnardel-Phu E; Hou X; Seror J; Vicaut E
    Am J Physiol Heart Circ Physiol; 2003 Sep; 285(3):H1254-60. PubMed ID: 12730058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulated microgravity upregulates an endothelial vasoconstrictor prostaglandin.
    Sangha DS; Han S; Purdy RE
    J Appl Physiol (1985); 2001 Aug; 91(2):789-96. PubMed ID: 11457795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen peroxide via thromboxane A2 receptors mediates myogenic response of small skeletal muscle veins in rats.
    Debreczeni B; Gara E; Veresh Z; Marki A; Racz A; Matics R; Hamar J; Koller A
    Clin Hemorheol Microcirc; 2013; 54(4):393-407. PubMed ID: 23478229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclooxygenase involvement in thromboxane-dependent contraction in rat mesenteric resistance arteries.
    Bolla M; You D; Loufrani L; Levy BI; Levy-Toledano S; Habib A; Henrion D
    Hypertension; 2004 Jun; 43(6):1264-9. PubMed ID: 15096470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A high salt diet alters pressure-induced mechanical activity of the rat lymphatics with enhancement of myogenic characteristics.
    Mizuno R; Isshiki M; Ono N; Nishimoto M; Fujita T
    Lymphat Res Biol; 2015 Mar; 13(1):2-9. PubMed ID: 25526023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms mediating the vasoactive effects of the B1 receptors of bradykinin.
    Duka I; Duka A; Kintsurashvili E; Johns C; Gavras I; Gavras H
    Hypertension; 2003 Nov; 42(5):1021-5. PubMed ID: 14557281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of constrictor prostanoids to the calcium-dependent basal tone in the aorta from rats with aortic coarctation-induced hypertension: relationship to nitric oxide.
    Dellipizzi A; Pucci ML; Mosny AY; Deseyn K; Nasjletti A
    J Pharmacol Exp Ther; 1997 Oct; 283(1):75-81. PubMed ID: 9336310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.