BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 10601165)

  • 1. Extracellular calcium modulates generation of reactive oxygen species by the contracting diaphragm.
    Supinski G; Nethery D; Stofan D; DiMarco A
    J Appl Physiol (1985); 1999 Dec; 87(6):2177-85. PubMed ID: 10601165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sepsis increases contraction-related generation of reactive oxygen species in the diaphragm.
    Nethery D; DiMarco A; Stofan D; Supinski G
    J Appl Physiol (1985); 1999 Oct; 87(4):1279-86. PubMed ID: 10517753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of reactive oxygen species by the contracting diaphragm is PLA(2) dependent.
    Nethery D; Stofan D; Callahan L; DiMarco A; Supinski G
    J Appl Physiol (1985); 1999 Aug; 87(2):792-800. PubMed ID: 10444641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intra- and extracellular measurement of reactive oxygen species produced during heat stress in diaphragm muscle.
    Zuo L; Christofi FL; Wright VP; Liu CY; Merola AJ; Berliner LJ; Clanton TL
    Am J Physiol Cell Physiol; 2000 Oct; 279(4):C1058-66. PubMed ID: 11003586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free radical-induced contractile protein dysfunction in endotoxin-induced sepsis.
    Callahan LA; Nethery D; Stofan D; DiMarco A; Supinski G
    Am J Respir Cell Mol Biol; 2001 Feb; 24(2):210-7. PubMed ID: 11159056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PLA(2) dependence of diaphragm mitochondrial formation of reactive oxygen species.
    Nethery D; Callahan LA; Stofan D; Mattera R; DiMarco A; Supinski G
    J Appl Physiol (1985); 2000 Jul; 89(1):72-80. PubMed ID: 10904037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of nitric oxide and reactive oxygen species on rat diaphragm contractility.
    Lawler JM; Hu Z
    Acta Physiol Scand; 2000 Jul; 169(3):229-36. PubMed ID: 10886037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time measurement of nitric oxide in single mature mouse skeletal muscle fibres during contractions.
    Pye D; Palomero J; Kabayo T; Jackson MJ
    J Physiol; 2007 May; 581(Pt 1):309-18. PubMed ID: 17331997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of release of reactive oxygen species by the contracting diaphragm.
    Stofan DA; Callahan LA; DiMARCO AF; Nethery DE; Supinski GS
    Am J Respir Crit Care Med; 2000 Mar; 161(3 Pt 1):891-8. PubMed ID: 10712339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antioxidants protect rat diaphragmatic muscle function under hypoxic conditions.
    Mohanraj P; Merola AJ; Wright VP; Clanton TL
    J Appl Physiol (1985); 1998 Jun; 84(6):1960-6. PubMed ID: 9609790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brazilein-induced contraction of rat arterial smooth muscle involves activation of Ca2+ entry and ROK, ERK pathways.
    Shen J; Yip S; Wang Z; Wang W; Xing D; Du L
    Eur J Pharmacol; 2008 Feb; 580(3):366-71. PubMed ID: 18177858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple calcium channels regulate neurotransmitter release from vagus nerve terminals in the cat bronchiole.
    Fujisawa K; Onoue H; Abe K; Ito Y
    Br J Pharmacol; 1999 Sep; 128(1):262-8. PubMed ID: 10498861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on maitotoxin-induced intracellular Ca(2+) elevation in chinese hamster ovary cells stably transfected with cDNAs encoding for L-type Ca(2+) channel subunits.
    Cataldi M; Secondo A; D'Alessio A; Taglialatela M; Hofmann F; Klugbauer N; Di Renzo G; Annunziato L
    J Pharmacol Exp Ther; 1999 Aug; 290(2):725-30. PubMed ID: 10411584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diltiazem, verapamil, and nifedipine inhibit theophylline-enhanced diaphragmatic contractility.
    Kolbeck RC; Speir WA
    Am Rev Respir Dis; 1989 Jan; 139(1):139-45. PubMed ID: 2912332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angiotensin II impairs neurovascular coupling in neocortex through NADPH oxidase-derived radicals.
    Kazama K; Anrather J; Zhou P; Girouard H; Frys K; Milner TA; Iadecola C
    Circ Res; 2004 Nov; 95(10):1019-26. PubMed ID: 15499027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive oxygen in skeletal muscle. II. Extracellular release of free radicals.
    Reid MB; Shoji T; Moody MR; Entman ML
    J Appl Physiol (1985); 1992 Nov; 73(5):1805-9. PubMed ID: 1335453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of protein kinase A inhibition on rat diaphragm force generation.
    Supinski G; Stofan D; Callahan LA; Nethery D; DiMarco A
    Respir Physiol; 2000 Apr; 120(2):115-23. PubMed ID: 10773242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of reactive oxygen species in the regulation of cardiac contractility.
    Kubin AM; Skoumal R; Tavi P; Kónyi A; Perjés A; Leskinen H; Ruskoaho H; Szokodi I
    J Mol Cell Cardiol; 2011 May; 50(5):884-93. PubMed ID: 21320508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of reactive oxygen species at increased contraction frequency in rat cardiomyocytes.
    Heinzel FR; Luo Y; Dodoni G; Boengler K; Petrat F; Di Lisa F; de Groot H; Schulz R; Heusch G
    Cardiovasc Res; 2006 Jul; 71(2):374-82. PubMed ID: 16780821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyanide-induced neurotoxicity involves nitric oxide and reactive oxygen species generation after N-methyl-D-aspartate receptor activation.
    Gunasekar PG; Sun PW; Kanthasamy AG; Borowitz JL; Isom GE
    J Pharmacol Exp Ther; 1996 Apr; 277(1):150-5. PubMed ID: 8613912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.