BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 10601497)

  • 1. Flow modulates the transport of K+ through the walls of single perfused mesenteric venules in anaesthetised rats.
    Kajimura M; Michel CC
    J Physiol; 1999 Dec; 521 Pt 3(Pt 3):665-77. PubMed ID: 10601497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the effects of nitric oxide synthase inhibition and guanylate cyclase inhibition on vascular contraction in vitro and in vivo in the rat.
    Abdullah K; Cawley T; Connolly C; Ruiz E; Docherty JR
    Naunyn Schmiedebergs Arch Pharmacol; 1997 Oct; 356(4):481-7. PubMed ID: 9349635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of effects of flow on potassium permeability in single perfused frog mesenteric capillaries.
    Kajimura M; Michel CC
    J Physiol; 1999 Apr; 516 ( Pt 1)(Pt 1):201-7. PubMed ID: 10066934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of flow on the transport of potassium ions through the walls of single perfused frog mesenteric capillaries.
    Kajimura M; Head SD; Michel CC
    J Physiol; 1998 Sep; 511 ( Pt 3)(Pt 3):707-18. PubMed ID: 9714854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of perfusion rate on permeability of frog and rat mesenteric microvessels to sodium fluorescein.
    Montermini D; Winlove CP; Michel C
    J Physiol; 2002 Sep; 543(Pt 3):959-75. PubMed ID: 12231651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Similar permeability responses to nitric oxide synthase inhibitors of venules from three animal species.
    Rumbaut RE; Huxley VH
    Microvasc Res; 2002 Jul; 64(1):21-31. PubMed ID: 12074627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between endogenously produced carbon monoxide and nitric oxide in regulation of renal afferent arterioles.
    Botros FT; Navar LG
    Am J Physiol Heart Circ Physiol; 2006 Dec; 291(6):H2772-8. PubMed ID: 16844915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potassium- and acetylcholine-induced vasorelaxation in mice lacking endothelial nitric oxide synthase.
    Ding H; Kubes P; Triggle C
    Br J Pharmacol; 2000 Mar; 129(6):1194-200. PubMed ID: 10725268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclic GMP is a second messenger by which nitric oxide inhibits diaphragm contraction.
    Abraham RZ; Kobzik L; Moody MR; Reid MB; Stamler JS
    Comp Biochem Physiol A Mol Integr Physiol; 1998 Jan; 119(1):177-83. PubMed ID: 11253783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does nitric oxide regulate capacitative Ca influx in HEK 293 cells?
    Bischof G; Serwold TF; Machen TE
    Cell Calcium; 1997 Feb; 21(2):135-42. PubMed ID: 9132296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide reduces tumor cell adhesion to isolated rat postcapillary venules.
    Kong L; Dunn GD; Keefer LK; Korthuis RJ
    Clin Exp Metastasis; 1996 Sep; 14(4):335-43. PubMed ID: 8878407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of contraction of rat mesenteric artery by acteoside: role of endothelial nitric oxide.
    Tam WY; Chen ZY; He ZD; Yao X; Lau CW; Huang Y
    J Nat Prod; 2002 Jul; 65(7):990-5. PubMed ID: 12141858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of nitric oxide synthase and soluble guanylate cyclase induces cardiodepressive effects in normal rat hearts.
    Kojda G; Kottenberg K; Noack E
    Eur J Pharmacol; 1997 Sep; 334(2-3):181-90. PubMed ID: 9369347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of endothelin to the coronary vasoconstriction in the isolated rat heart induced by nitric oxide synthase inhibition.
    Wang QD; Gonon A; Shimizu M; Sjöquist PO; Pernow J
    Acta Physiol Scand; 1998 Aug; 163(4):325-30. PubMed ID: 9789575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of clenbuterol on non-endothelial nitric oxide release in rat mesenteric arteries and the involvement of beta-adrenoceptors.
    Marín J; Balfagón G
    Br J Pharmacol; 1998 Jun; 124(3):473-8. PubMed ID: 9647470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effects of L-NAME on rat venular hydraulic conductivity.
    Rumbaut RE; Wang J; Huxley VH
    Am J Physiol Heart Circ Physiol; 2000 Oct; 279(4):H2017-23. PubMed ID: 11009493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal nitric oxide synthase-dependent afferent arteriolar function in angiotensin II-induced hypertension.
    Ichihara A; Imig JD; Navar LG
    Hypertension; 1999 Jan; 33(1 Pt 2):462-6. PubMed ID: 9931148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relaxant effect of C-type natriuretic peptide involves endothelium and nitric oxide-cGMP system in rat coronary microvasculature.
    Brunner F; Wölkart G
    Cardiovasc Res; 2001 Aug; 51(3):577-84. PubMed ID: 11476748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vasorelaxing effects of propranolol in rat aorta and mesenteric artery: a role for nitric oxide and calcium entry blockade.
    Priviero FB; Teixeira CE; Toque HA; Claudino MA; Webb RC; De Nucci G; Zanesco A; Antunes E
    Clin Exp Pharmacol Physiol; 2006; 33(5-6):448-55. PubMed ID: 16700877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term inhibition of nitric oxide synthase potentiates effects of anandamide in the rat mesenteric bed.
    Mendizábal VE; Orliac ML; Adler-Graschinsky E
    Eur J Pharmacol; 2001 Sep; 427(3):251-62. PubMed ID: 11567656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.