BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 10601682)

  • 1. Formation of HDL-like complexes from apolipoprotein A-I(M) and DMPC.
    Suurkuusk M; Singh SK
    Int J Pharm; 2000 Jan; 194(1):21-38. PubMed ID: 10601682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformation and lipid binding of a C-terminal (198-243) peptide of human apolipoprotein A-I.
    Zhu HL; Atkinson D
    Biochemistry; 2007 Feb; 46(6):1624-34. PubMed ID: 17279626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholesterol is a determinant of the structures of discoidal high density lipoproteins formed by the solubilization of phospholipid membranes by apolipoprotein A-I.
    Massey JB; Pownall HJ
    Biochim Biophys Acta; 2008 May; 1781(5):245-53. PubMed ID: 18406360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic stabilization and fusion of apolipoprotein A-2:DMPC disks: comparison with apoA-1 and apoC-1.
    Jayaraman S; Gantz DL; Gursky O
    Biophys J; 2005 Apr; 88(4):2907-18. PubMed ID: 15681655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of protein oxidation on the structure and stability of model discoidal high-density lipoproteins.
    Jayaraman S; Gantz DL; Gursky O
    Biochemistry; 2008 Mar; 47(12):3875-82. PubMed ID: 18302337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An alternate apoprotein conformation in high density apolipoprotein discoidal complexes. A Fourier transform infra-red study.
    Yang JY; Treleaven WD; Cushley RJ
    Biochem Int; 1991 Dec; 25(6):1077-86. PubMed ID: 1810252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic effects on the stability of discoidal high-density lipoproteins.
    Benjwal S; Jayaraman S; Gursky O
    Biochemistry; 2005 Aug; 44(30):10218-26. PubMed ID: 16042399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstituted high-density lipoproteins with a disulfide-linked apolipoprotein A-I dimer: evidence for restricted particle size heterogeneity.
    Calabresi L; Vecchio G; Frigerio F; Vavassori L; Sirtori CR; Franceschini G
    Biochemistry; 1997 Oct; 36(41):12428-33. PubMed ID: 9376346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Only the two end helixes of eight tandem amphipathic helical domains of human apo A-I have significant lipid affinity. Implications for HDL assembly.
    Palgunachari MN; Mishra VK; Lund-Katz S; Phillips MC; Adeyeye SO; Alluri S; Anantharamaiah GM; Segrest JP
    Arterioscler Thromb Vasc Biol; 1996 Feb; 16(2):328-38. PubMed ID: 8620350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smaller discoidal high-density lipoprotein particles form saddle surfaces, but not planar bilayers.
    Miyazaki M; Nakano M; Fukuda M; Handa T
    Biochemistry; 2009 Aug; 48(32):7756-63. PubMed ID: 19610670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free cholesterol determines reassembled high-density lipoprotein phospholipid phase structure and stability.
    Auton M; Bassett GR; Gillard BK; Pownall HJ
    Biochemistry; 2013 Jun; 52(25):4324-30. PubMed ID: 23721456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apolipoprotein A-I configuration and cell cholesterol efflux activity of discoidal lipoproteins depend on the reconstitution process.
    Cuellar LÁ; Prieto ED; Cabaleiro LV; Garda HA
    Biochim Biophys Acta; 2014 Jan; 1841(1):180-9. PubMed ID: 24201377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanism of human plasma phospholipid transfer protein-induced enlargement of high-density lipoprotein particles: evidence for particle fusion.
    Lusa S; Jauhiainen M; Metso J; Somerharju P; Ehnholm C
    Biochem J; 1996 Jan; 313 ( Pt 1)(Pt 1):275-82. PubMed ID: 8546695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of phospholipid-rich HDL: a model for square-packing lipoprotein particles found in interstitial fluid and in abetalipoproteinemic plasma.
    Forte TM; Luming Ren C; Nordhausen RW; Nichols AV
    Biochim Biophys Acta; 1985 May; 834(3):386-95. PubMed ID: 3995074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of apolipoprotein-specific high-density lipoprotein particles from lipid-free apolipoproteins A-I and A-II.
    Clay MA; Cehic DA; Pyle DH; Rye KA; Barter PJ
    Biochem J; 1999 Feb; 337 ( Pt 3)(Pt 3):445-51. PubMed ID: 9895287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of human plasma high-density lipoprotein HDL2b with discoidal complexes of dimyristoylphosphatidylcholine and apolipoprotein A-I.
    Nichols AV; Gong EL; Blanche PJ; Forte TM
    Biochim Biophys Acta; 1980 Mar; 617(3):480-8. PubMed ID: 6768395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and functional properties of apolipoprotein A-I mutants containing disulfide-linked cysteines at positions 124 or 232.
    Tian S; Jonas A
    Biochim Biophys Acta; 2002 Sep; 1599(1-2):56-64. PubMed ID: 12479405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid-free structure and stability of apolipoprotein A-I: probing the central region by mutation.
    Gorshkova IN; Liu T; Zannis VI; Atkinson D
    Biochemistry; 2002 Aug; 41(33):10529-39. PubMed ID: 12173940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of methionine residues affects the structure and stability of apolipoprotein A-I in reconstituted high density lipoprotein particles.
    Sigalov AB; Stern LJ
    Chem Phys Lipids; 2001 Nov; 113(1-2):133-46. PubMed ID: 11687233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of oxysterol structure on the microdomain-induced microsolubilization of phospholipid membranes by apolipoprotein A-I.
    Massey JB; Pownall HJ
    Biochemistry; 2005 Nov; 44(43):14376-84. PubMed ID: 16245954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.