BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 10601856)

  • 1. Structure and interaction of VacA of Helicobacter pylori with a lipid membrane.
    Pagliaccia C; Wang XM; Tardy F; Telford JL; Ruysschaert JM; Cabiaux V
    Eur J Biochem; 2000 Jan; 267(1):104-9. PubMed ID: 10601856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The acid activation of Helicobacter pylori toxin VacA: structural and membrane binding studies.
    Molinari M; Galli C; de Bernard M; Norais N; Ruysschaert JM; Rappuoli R; Montecucco C
    Biochem Biophys Res Commun; 1998 Jul; 248(2):334-40. PubMed ID: 9675136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane topology of VacA cytotoxin from H. pylori.
    Wang X; Wattiez R; Paggliacia C; Telford JL; Ruysschaert J; Cabiaux V
    FEBS Lett; 2000 Sep; 481(2):96-100. PubMed ID: 10996303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting of Helicobacter pylori vacuolating toxin to lipid raft membrane domains analysed by atomic force microscopy.
    Geisse NA; Cover TL; Henderson RM; Edwardson JM
    Biochem J; 2004 Aug; 381(Pt 3):911-7. PubMed ID: 15128269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel Bacillus thuringiensis (PS149B1) containing a Cry34Ab1/Cry35Ab1 binary toxin specific for the western corn rootworm Diabrotica virgifera virgifera LeConte forms ion channels in lipid membranes.
    Masson L; Schwab G; Mazza A; Brousseau R; Potvin L; Schwartz JL
    Biochemistry; 2004 Sep; 43(38):12349-57. PubMed ID: 15379574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Essential role of a GXXXG motif for membrane channel formation by Helicobacter pylori vacuolating toxin.
    McClain MS; Iwamoto H; Cao P; Vinion-Dubiel AD; Li Y; Szabo G; Shao Z; Cover TL
    J Biol Chem; 2003 Apr; 278(14):12101-8. PubMed ID: 12562777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Helicobacter pylori vacuolating toxin forms anion-selective channels in planar lipid bilayers: possible implications for the mechanism of cellular vacuolation.
    Tombola F; Carlesso C; Szabò I; de Bernard M; Reyrat JM; Telford JL; Rappuoli R; Montecucco C; Papini E; Zoratti M
    Biophys J; 1999 Mar; 76(3):1401-9. PubMed ID: 10049322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The vacuolating toxin from Helicobacter pylori forms hexameric pores in lipid bilayers at low pH.
    Czajkowsky DM; Iwamoto H; Cover TL; Shao Z
    Proc Natl Acad Sci U S A; 1999 Mar; 96(5):2001-6. PubMed ID: 10051584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VacA from Helicobacter pylori: a hexameric chloride channel.
    Iwamoto H; Czajkowsky DM; Cover TL; Szabo G; Shao Z
    FEBS Lett; 1999 Apr; 450(1-2):101-4. PubMed ID: 10350065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Branched phospholipids render lipid vesicles more susceptible to membrane-active peptides.
    Mitchell NJ; Seaton P; Pokorny A
    Biochim Biophys Acta; 2016 May; 1858(5):988-94. PubMed ID: 26514602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural organization of membrane-inserted hexamers formed by Helicobacter pylori VacA toxin.
    Pyburn TM; Foegeding NJ; González-Rivera C; McDonald NA; Gould KL; Cover TL; Ohi MD
    Mol Microbiol; 2016 Oct; 102(1):22-36. PubMed ID: 27309820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid interaction of the 37-kDa and 58-kDa fragments of the Helicobacter pylori cytotoxin.
    Moll G; Papini E; Colonna R; Burroni D; Telford J; Rappuoli R; Montecucco C
    Eur J Biochem; 1995 Dec; 234(3):947-52. PubMed ID: 8575456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Analysis of Membrane-associated Forms of Helicobacter pylori VacA Toxin.
    Connolly SM; Erwin AL; Sabb M; Hanks JL; Chang L; Torrez RM; Caso GC; Campbell AM; Mosalaganti S; Cover TL; Ohi MD
    J Mol Biol; 2024 Feb; 436(4):168432. PubMed ID: 38161000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of the vacuolating and anion channel activities of the VacA toxin of Helicobacter pylori.
    Tombola F; Oregna F; Brutsche S; Szabò I; Del Giudice G; Rappuoli R; Montecucco C; Papini E; Zoratti M
    FEBS Lett; 1999 Oct; 460(2):221-5. PubMed ID: 10544239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How the loop and middle regions influence the properties of Helicobacter pylori VacA channels.
    Tombola F; Pagliaccia C; Campello S; Telford JL; Montecucco C; Papini E; Zoratti M
    Biophys J; 2001 Dec; 81(6):3204-15. PubMed ID: 11720986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Avian adenovirus induces ion channels in model bilayer lipid membranes.
    Rosenkranz AA; Antonenko YN; Smirnova OA; Yurov GK; Naroditsky BS; Sobolev AS
    Biochem Biophys Res Commun; 1997 Jul; 236(3):750-3. PubMed ID: 9245727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism and kinetics of delta-lysin interaction with phospholipid vesicles.
    Pokorny A; Birkbeck TH; Almeida PF
    Biochemistry; 2002 Sep; 41(36):11044-56. PubMed ID: 12206677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 12-amino-acid segment, present in type s2 but not type s1 Helicobacter pylori VacA proteins, abolishes cytotoxin activity and alters membrane channel formation.
    McClain MS; Cao P; Iwamoto H; Vinion-Dubiel AD; Szabo G; Shao Z; Cover TL
    J Bacteriol; 2001 Nov; 183(22):6499-508. PubMed ID: 11673417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of prion protein to lipid membranes and implications for prion conversion.
    Sanghera N; Pinheiro TJ
    J Mol Biol; 2002 Feb; 315(5):1241-56. PubMed ID: 11827491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secondary structure of anthrax lethal toxin proteins and their interaction with large unilamellar vesicles: a fourier-transform infrared spectroscopy approach.
    Wang XM; Mock M; Ruysschaert JM; Cabiaux V
    Biochemistry; 1996 Nov; 35(47):14939-46. PubMed ID: 8942659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.