These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 10601884)

  • 1. Oxidants and skeletal muscle function: physiologic and pathophysiologic implications.
    Clanton TL; Zuo L; Klawitter P
    Proc Soc Exp Biol Med; 1999 Dec; 222(3):253-62. PubMed ID: 10601884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactive oxygen species: impact on skeletal muscle.
    Powers SK; Ji LL; Kavazis AN; Jackson MJ
    Compr Physiol; 2011 Apr; 1(2):941-69. PubMed ID: 23737208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interplay of oxidants and antioxidants during exercise: implications for muscle health.
    Gomez-Cabrera MC; Viña J; Ji LL
    Phys Sportsmed; 2009 Dec; 37(4):116-23. PubMed ID: 20048548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypoxia-induced reactive oxygen species formation in skeletal muscle.
    Clanton TL
    J Appl Physiol (1985); 2007 Jun; 102(6):2379-88. PubMed ID: 17289907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production.
    Powers SK; Jackson MJ
    Physiol Rev; 2008 Oct; 88(4):1243-76. PubMed ID: 18923182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mitochondrial-targeted antioxidant improves myofilament Ca
    Gandra PG; Shiah AA; Nogueira L; Hogan MC
    J Physiol; 2018 Mar; 596(6):1079-1089. PubMed ID: 29334129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response and adaptation of skeletal muscle to exercise--the role of reactive oxygen species.
    Niess AM; Simon P
    Front Biosci; 2007 Sep; 12():4826-38. PubMed ID: 17569613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of reactive oxygen species in contraction-mediated glucose transport in mouse skeletal muscle.
    Sandström ME; Zhang SJ; Bruton J; Silva JP; Reid MB; Westerblad H; Katz A
    J Physiol; 2006 Aug; 575(Pt 1):251-62. PubMed ID: 16777943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear factor erythroid-derived 2-like 2 (NFE2L2, Nrf2) mediates exercise-induced mitochondrial biogenesis and the anti-oxidant response in mice.
    Merry TL; Ristow M
    J Physiol; 2016 Sep; 594(18):5195-207. PubMed ID: 27094017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cycling with blood flow restriction improves performance and muscle K
    Christiansen D; Eibye KH; Rasmussen V; Voldbye HM; Thomassen M; Nyberg M; Gunnarsson TGP; Skovgaard C; Lindskrog MS; Bishop DJ; Hostrup M; Bangsbo J
    J Physiol; 2019 May; 597(9):2421-2444. PubMed ID: 30843602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ROS in the local and systemic pathogenesis of COPD.
    Langen RC; Korn SH; Wouters EF
    Free Radic Biol Med; 2003 Aug; 35(3):226-35. PubMed ID: 12885585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle redox signalling pathways in exercise. Role of antioxidants.
    Mason SA; Morrison D; McConell GK; Wadley GD
    Free Radic Biol Med; 2016 Sep; 98():29-45. PubMed ID: 26912034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperthermia, dehydration, and osmotic stress: unconventional sources of exercise-induced reactive oxygen species.
    King MA; Clanton TL; Laitano O
    Am J Physiol Regul Integr Comp Physiol; 2016 Jan; 310(2):R105-14. PubMed ID: 26561649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of free radicals and antioxidant signaling in skeletal muscle health and pathology.
    Ji LL; Gomez-Cabrera MC; Vina J
    Infect Disord Drug Targets; 2009 Aug; 9(4):428-44. PubMed ID: 19689384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of cellular responses to free radicals: focus on exercise and skeletal muscle.
    Powers SK; Lennon SL
    Proc Nutr Soc; 1999 Nov; 58(4):1025-33. PubMed ID: 10817171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide, reactive oxygen species, and skeletal muscle contraction.
    Reid MB
    Med Sci Sports Exerc; 2001 Mar; 33(3):371-6. PubMed ID: 11252061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of reactive oxygen species and interplay of antioxidants during physical exercise in skeletal muscles.
    Thirupathi A; Pinho RA
    J Physiol Biochem; 2018 Aug; 74(3):359-367. PubMed ID: 29713940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altitude-induced changes in muscle contractile properties.
    Perrey S; Rupp T
    High Alt Med Biol; 2009; 10(2):175-82. PubMed ID: 19519224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive oxygen species formation in the transition to hypoxia in skeletal muscle.
    Zuo L; Clanton TL
    Am J Physiol Cell Physiol; 2005 Jul; 289(1):C207-16. PubMed ID: 15788484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of vitamin C and vitamin E on redox signaling: Implications for exercise adaptations.
    Cobley JN; McHardy H; Morton JP; Nikolaidis MG; Close GL
    Free Radic Biol Med; 2015 Jul; 84():65-76. PubMed ID: 25841784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.