These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 10602064)
1. Alumina powder/Bis-GMA composite: effect of filler content on mechanical properties and osteoconductivity. Kobayashi M; Shinzato S; Kawanabe K; Neo M; Matsushita M; Kokubo T; Kikutani T; Nakamura T J Biomed Mater Res; 2000 Mar; 49(3):319-27. PubMed ID: 10602064 [TBL] [Abstract][Full Text] [Related]
2. Direct bone formation on alumina bead composite. Kobayashi M; Kikutani T; Kokubo T; Nakamura T J Biomed Mater Res; 1997 Dec; 37(4):554-65. PubMed ID: 9407305 [TBL] [Abstract][Full Text] [Related]
3. Effect of bioactive filler content on mechanical properties and osteoconductivity of bioactive bone cement. Kobayashi M; Nakamura T; Shinzato S; Mousa WF; Nishio K; Ohsawa K; Kokubo T; Kikutani T J Biomed Mater Res; 1999 Sep; 46(4):447-57. PubMed ID: 10398005 [TBL] [Abstract][Full Text] [Related]
4. Composites consisting of poly(methyl methacrylate) and alumina powder: an evaluation of their mechanical and biological properties. Shinzato S; Nakamura T; Kokubo T; Kitamura Y J Biomed Mater Res; 2002 Jun; 60(4):585-91. PubMed ID: 11948517 [TBL] [Abstract][Full Text] [Related]
5. Bone-bonding behavior of alumina bead composite. Shinzato S; Kobayashi M; Choju K; Kokubo T; Nakamura T J Biomed Mater Res; 1999 Aug; 46(2):287-300. PubMed ID: 10380008 [TBL] [Abstract][Full Text] [Related]
6. Mechanical and biological properties of bioactive bone cement containing silica glass powder. Kobayashi M; Nakamura T; Tamura J; Iida H; Fujita H; Kokubo T; Kikutani T J Biomed Mater Res; 1997 Oct; 37(1):68-80. PubMed ID: 9335351 [TBL] [Abstract][Full Text] [Related]
7. Mechanical properties and osteoconductivity of new bioactive composites consisting of partially crystallized glass beads and poly(methyl methacrylate). Shinzato S; Nakamura T; Ando K; Kokubo T; Kitamura Y J Biomed Mater Res; 2002 Jun; 60(4):556-63. PubMed ID: 11948514 [TBL] [Abstract][Full Text] [Related]
8. PMMA-based bioactive cement: effect of glass bead filler content and histological change with time. Shinzato S; Nakamura T; Kokubo T; Kitamura Y J Biomed Mater Res; 2002 Feb; 59(2):225-32. PubMed ID: 11745557 [TBL] [Abstract][Full Text] [Related]
9. Ultrastructure of the interface between alumina bead composite and bone. Okada Y; Kobayashi M; Neo M; Shinzato S; Matsushita M; Kokubo T; Nakamura T J Biomed Mater Res; 2000 Jan; 49(1):106-11. PubMed ID: 10559752 [TBL] [Abstract][Full Text] [Related]
10. Bioactive bone cement: comparison of AW-GC filler with hydroxyapatite and beta-TCP fillers on mechanical and biological properties. Kobayashi M; Nakamura T; Tamura J; Kokubo T; Kikutani T J Biomed Mater Res; 1997 Dec; 37(3):301-13. PubMed ID: 9368135 [TBL] [Abstract][Full Text] [Related]
11. Effects of apatite and wollastonite containing glass-ceramic powder and two types of alumina powder in composites on osteoblastic differentiation of bone marrow cells. Nishio K; Neo M; Akiyama H; Okada Y; Kokubo T; Nakamura T J Biomed Mater Res; 2001 May; 55(2):164-76. PubMed ID: 11255168 [TBL] [Abstract][Full Text] [Related]
12. Osteoconductivity and bone-bonding strength of high- and low-viscous bioactive bone cements. Kobayashi M; Nakamura T; Tamura J; Kikutani T; Nishiguchi S; Mousa WF; Takahashi M; Kokubo T J Biomed Mater Res; 1999; 48(3):265-76. PubMed ID: 10398030 [TBL] [Abstract][Full Text] [Related]
13. Bioactive polymethyl methacrylate-based bone cement: comparison of glass beads, apatite- and wollastonite-containing glass-ceramic, and hydroxyapatite fillers on mechanical and biological properties. Shinzato S; Kobayashi M; Mousa WF; Kamimura M; Neo M; Kitamura Y; Kokubo T; Nakamura T J Biomed Mater Res; 2000 Aug; 51(2):258-72. PubMed ID: 10825226 [TBL] [Abstract][Full Text] [Related]
14. Bioactive bone cement: Effect of silane treatment on mechanical properties and osteoconductivity. Shinzato S; Nakamura T; Kokubo T; Kitamura Y J Biomed Mater Res; 2001 Jun; 55(3):277-84. PubMed ID: 11255180 [TBL] [Abstract][Full Text] [Related]
15. A new bioactive bone cement: effect of glass bead filler content on mechanical and biological properties. Shinzato S; Nakamura T; Kokubo T; Kitamura Y J Biomed Mater Res; 2001 Mar; 54(4):491-500. PubMed ID: 11426593 [TBL] [Abstract][Full Text] [Related]
16. A new bioactive bone cement consisting of BIS-GMA resin and bioactive glass powder. Kawanabe K; Tamura J; Yamamuro T; Nakamura T; Kokubo T; Yoshihara S J Appl Biomater; 1993; 4(2):135-41. PubMed ID: 10148600 [TBL] [Abstract][Full Text] [Related]
17. PMMA-based bioactive cement: effect of CaF2 on osteoconductivity and histological change with time. Shinzato S; Nakamura T; Kawanabe K; Kokubo T J Biomed Mater Res B Appl Biomater; 2003 May; 65(2):262-71. PubMed ID: 12687719 [TBL] [Abstract][Full Text] [Related]
18. Transmission electron microscopic study of interface between bioactive bone cement and bone: comparison of apatite and wollastonite containing glass-ceramic filler with hydroxyapatite and beta-tricalcium phosphate fillers. Okada Y; Kobayashi M; Fujita H; Katsura Y; Matsuoka H; Takadama H; Kokubo T; Nakamura T J Biomed Mater Res; 1999 Jun; 45(4):277-84. PubMed ID: 10321699 [TBL] [Abstract][Full Text] [Related]
19. Bioactive bone cement: effect of surface curing properties on bone-bonding strength. Shinzato S; Kobayashi M; Mousa WF; Kamimura M; Neo M; Choju K; Kokubo T; Nakamura T J Biomed Mater Res; 2000; 53(1):51-61. PubMed ID: 10634952 [TBL] [Abstract][Full Text] [Related]
20. Bioactive bone cement: comparison of apatite and wollastonite containing glass-ceramic, hydroxyapatite, and beta-tricalcium phosphate fillers on bone-bonding strength. Kobayashi M; Nakamura T; Okada Y; Fukumoto A; Furukawa T; Kato H; Kokubo T; Kikutani T J Biomed Mater Res; 1998 Nov; 42(2):223-37. PubMed ID: 9773818 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]