These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 10602065)

  • 1. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones.
    Kon E; Muraglia A; Corsi A; Bianco P; Marcacci M; Martin I; Boyde A; Ruspantini I; Chistolini P; Rocca M; Giardino R; Cancedda R; Quarto R
    J Biomed Mater Res; 2000 Mar; 49(3):328-37. PubMed ID: 10602065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone marrow stromal cells and their use in regenerating bone.
    Cancedda R; Mastrogiacomo M; Bianchi G; Derubeis A; Muraglia A; Quarto R
    Novartis Found Symp; 2003; 249():133-43; discussion 143-7, 170-4, 239-41. PubMed ID: 12708654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Healing of segmental bone defects with granular porous hydroxyapatite augmented with recombinant human osteogenic protein-1 or autologous bone marrow.
    den Boer FC; Wippermann BW; Blokhuis TJ; Patka P; Bakker FC; Haarman HJ
    J Orthop Res; 2003 May; 21(3):521-8. PubMed ID: 12706026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical evaluation of cell-loaded and cell-free hydroxyapatite implants for the reconstruction of segmental bone defects.
    Chistolini P; Ruspantini I; Bianco P; Corsi A; Cancedda R; Quarto R
    J Mater Sci Mater Med; 1999 Dec; 10(12):739-42. PubMed ID: 15347943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vivo Bone Formation Within Engineered Hydroxyapatite Scaffolds in a Sheep Model.
    Lovati AB; Lopa S; Recordati C; Talò G; Turrisi C; Bottagisio M; Losa M; Scanziani E; Moretti M
    Calcif Tissue Int; 2016 Aug; 99(2):209-23. PubMed ID: 27075029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects.
    Bruder SP; Kraus KH; Goldberg VM; Kadiyala S
    J Bone Joint Surg Am; 1998 Jul; 80(7):985-96. PubMed ID: 9698003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of bone using bone marrow stromal cells and a silicon-stabilized tricalcium phosphate bioceramic: evidence for a coupling between bone formation and scaffold resorption.
    Mastrogiacomo M; Papadimitropoulos A; Cedola A; Peyrin F; Giannoni P; Pearce SG; Alini M; Giannini C; Guagliardi A; Cancedda R
    Biomaterials; 2007 Mar; 28(7):1376-84. PubMed ID: 17134749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A bioactive and bioresorbable porous cubic composite scaffold loaded with bone marrow aspirate: a potential alternative to autogenous bone grafting.
    Tanaka K; Takemoto M; Fujibayashi S; Neo M; Shikinami Y; Nakamura T
    Spine (Phila Pa 1976); 2011 Mar; 36(6):441-7. PubMed ID: 21124263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue-engineered bone repair of sheep cranial defects with autologous bone marrow stromal cells.
    Shang Q; Wang Z; Liu W; Shi Y; Cui L; Cao Y
    J Craniofac Surg; 2001 Nov; 12(6):586-93; discussion 594-5. PubMed ID: 11711828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone grafts cultured with bone marrow stromal cells for the repair of critical bone defects: an experimental study in mice.
    Dumas A; Moreau MF; Ghérardi RK; Baslé MF; Chappard D
    J Biomed Mater Res A; 2009 Sep; 90(4):1218-29. PubMed ID: 18683231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 1-year study of osteoinduction in hydroxyapatite-derived biomaterials in an adult sheep model: part I.
    Gosain AK; Song L; Riordan P; Amarante MT; Nagy PG; Wilson CR; Toth JM; Ricci JL
    Plast Reconstr Surg; 2002 Feb; 109(2):619-30. PubMed ID: 11818845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of autologous bone marrow stromal cells differentiated on scaffolds for canine tibial bone reconstruction.
    Özdal-Kurt F; Tuğlu I; Vatansever HS; Tong S; Deliloğlu-Gürhan SI
    Biotech Histochem; 2015; 90(7):516-28. PubMed ID: 25994048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone tissue reconstruction using titanium fiber mesh combined with rat bone marrow stromal cells.
    van den Dolder J; Farber E; Spauwen PH; Jansen JA
    Biomaterials; 2003 May; 24(10):1745-50. PubMed ID: 12593956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteogenesis after bone and bone marrow transplantation. The ability of ceramic materials to sustain osteogenesis from transplanted bone marrow cells: preliminary studies.
    Nade S; Armstrong L; McCartney E; Baggaley B
    Clin Orthop Relat Res; 1983 Dec; (181):255-63. PubMed ID: 6315286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prefabricated engineered bone flaps: an experimental model of tissue reconstruction in plastic surgery.
    Casabona F; Martin I; Muraglia A; Berrino P; Santi P; Cancedda R; Quarto R
    Plast Reconstr Surg; 1998 Mar; 101(3):577-81. PubMed ID: 9500374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allogeneic mesenchymal progenitor cells for posterolateral lumbar spine fusion in sheep.
    Wheeler DL; Lane JM; Seim HB; Puttlitz CM; Itescu S; Turner AS
    Spine J; 2014 Mar; 14(3):435-44. PubMed ID: 24438940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstruction of extensive long-bone defects in sheep using porous hydroxyapatite sponges.
    Marcacci M; Kon E; Zaffagnini S; Giardino R; Rocca M; Corsi A; Benvenuti A; Bianco P; Quarto R; Martin I; Muraglia A; Cancedda R
    Calcif Tissue Int; 1999 Jan; 64(1):83-90. PubMed ID: 9868289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Healing of autologous cancellous bone transplants and hydroxylapatite ceramics in tibial segment defects. Value of ultrasonic follow up].
    Wefer J; Wefer A; Schratt HE; Thermann H; Wippermann BW
    Unfallchirurg; 2000 Jun; 103(6):452-61. PubMed ID: 10925647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repair of goat tibial defects with bone marrow stromal cells and beta-tricalcium phosphate.
    Liu G; Zhao L; Zhang W; Cui L; Liu W; Cao Y
    J Mater Sci Mater Med; 2008 Jun; 19(6):2367-76. PubMed ID: 18158615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteogenic potential of cultured bone/ceramic construct: comparison with marrow mesenchymal cell/ceramic composite.
    Iida J; Yoshikawa T; Akahane M; Ohgushi H; Dohi Y; Takakura Y; Nonomura A
    Cell Transplant; 2004; 13(4):357-65. PubMed ID: 15468677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.