These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 10602074)

  • 1. Adsorption of plasminogen from human plasma to lysine-containing surfaces.
    McClung WG; Clapper DL; Hu SP; Brash JL
    J Biomed Mater Res; 2000 Mar; 49(3):409-14. PubMed ID: 10602074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfaces having dual fibrinolytic and protein resistant properties by immobilization of lysine on polyurethane through a PEG spacer.
    Chen H; Zhang Y; Li D; Hu X; Wang L; McClung WG; Brash JL
    J Biomed Mater Res A; 2009 Sep; 90(3):940-6. PubMed ID: 18646203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of plasminogen from plasma to lysine-derivatized polyurethane surfaces.
    Woodhouse KA; Brash JL
    Biomaterials; 1992; 13(15):1103-8. PubMed ID: 1493194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of fibrinolytic system proteins with lysine-containing surfaces.
    McClung WG; Clapper DL; Anderson AB; Babcock DE; Brash JL
    J Biomed Mater Res A; 2003 Sep; 66(4):795-801. PubMed ID: 12926031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lysine-PEG-modified polyurethane as a fibrinolytic surface: Effect of PEG chain length on protein interactions, platelet interactions and clot lysis.
    Li D; Chen H; Glenn McClung W; Brash JL
    Acta Biomater; 2009 Jul; 5(6):1864-71. PubMed ID: 19342321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lysine-derivatized polyurethane as a clot lysing surface: conversion of adsorbed plasminogen to plasmin and clot lysis in vitro.
    McClung WG; Clapper DL; Hu SP; Brash JL
    Biomaterials; 2001 Jul; 22(13):1919-24. PubMed ID: 11396898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lysine-poly(2-hydroxyethyl methacrylate) modified polyurethane surface with high lysine density and fibrinolytic activity.
    Li D; Chen H; Wang S; Wu Z; Brash JL
    Acta Biomater; 2011 Mar; 7(3):954-8. PubMed ID: 20977952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fibrinolytic properties of lysine-derivatized polyethylene in contact with flowing whole blood (Chandler loop model).
    McClung WG; Babcock DE; Brash JL
    J Biomed Mater Res A; 2007 Jun; 81(3):644-51. PubMed ID: 17187399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-resistant and fibrinolytic polyurethane surfaces.
    Wu Z; Chen H; Liu X; Brash JL
    Macromol Biosci; 2012 Jan; 12(1):126-31. PubMed ID: 21998081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and evaluation of polyurethane surfaces containing immobilized plasminogen.
    Marconi W; Piozzi A; Romoli D
    J Biomater Sci Polym Ed; 1996; 8(4):237-49. PubMed ID: 9041039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibrinolytic poly(dimethyl siloxane) surfaces.
    Chen H; Wang L; Zhang Y; Li D; McClung WG; Brook MA; Sheardown H; Brash JL
    Macromol Biosci; 2008 Sep; 8(9):863-70. PubMed ID: 18504801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective plasminogen binding: cysteinyl-lysine-dextran protein interactions.
    Warkentin PH
    Biomaterials; 1998 Oct; 19(19):1753-61. PubMed ID: 9856586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue plasminogen activator-containing polyurethane surfaces for fibrinolytic activity.
    Wu Z; Chen H; Li D; Brash JL
    Acta Biomater; 2011 May; 7(5):1993-8. PubMed ID: 21256990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Biospecific properties of lysine-contained polyelectrolyte coatings for devices contacting blood].
    Samoĭlova NA; Kraiukhina MA; Novikova SP; Mukhametova LI; Aĭsina RB; Iamskov IA
    Biomed Khim; 2008; 54(5):577-87. PubMed ID: 19105400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermoresponsive copolymer decorated surface enables controlling the adsorption of a target protein in plasma.
    Yang W; Tang Z; Luan Y; Liu W; Li D; Chen H
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10146-52. PubMed ID: 24909414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood compatibility of PEO grafted polyurethane and HEMA/styrene block copolymer surfaces.
    Nojiri C; Okano T; Jacobs HA; Park KD; Mohammad SF; Olsen DB; Kim SW
    J Biomed Mater Res; 1990 Sep; 24(9):1151-71. PubMed ID: 2211743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic purification of plasminogen from human plasma by specific lysine affinity.
    Liu CH; Wu WC; Lai HY; Hou HY
    J Biosci Bioeng; 2011 Sep; 112(3):219-24. PubMed ID: 21632285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of sulfonation of segmented polyurethanes on the transient adsorption of fibrinogen from plasma: possible correlation with anticoagulant behavior.
    Santerre JP; ten Hove P; VanderKamp NH; Brash JL
    J Biomed Mater Res; 1992 Jan; 26(1):39-57. PubMed ID: 1577834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein resistant polyurethane surfaces by chemical grafting of PEO: amino-terminated PEO as grafting reagent.
    Archambault JG; Brash JL
    Colloids Surf B Biointerfaces; 2004 Nov; 39(1-2):9-16. PubMed ID: 15542334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate-independent, Schiff base interactions to fabricate lysine-functionalized surfaces with fibrinolytic activity.
    Lu XW; Liu W; Wu ZQ; Xiong XH; Liu Q; Zhan WJ; Chen H
    J Mater Chem B; 2016 Feb; 4(8):1458-1465. PubMed ID: 32263112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.