BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 10602254)

  • 1. Stimulation-induced changes in filopodial dynamics determine the action radius of growth cones in the snail Helisoma trivolvis.
    Van Wagenen S; Cheng S; Rehder V
    Cell Motil Cytoskeleton; 1999 Dec; 44(4):248-62. PubMed ID: 10602254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide regulates growth cone filopodial dynamics via ryanodine receptor-mediated calcium release.
    Welshhans K; Rehder V
    Eur J Neurosci; 2007 Sep; 26(6):1537-47. PubMed ID: 17714493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local activation of the nitric oxide/cyclic guanosine monophosphate pathway in growth cones regulates filopodial length via protein kinase G, cyclic ADP ribose and intracellular Ca2+ release.
    Welshhans K; Rehder V
    Eur J Neurosci; 2005 Dec; 22(12):3006-16. PubMed ID: 16367767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetylcholine elongates neuronal growth cone filopodia via activation of nicotinic acetylcholine receptors.
    Zhong LR; Estes S; Artinian L; Rehder V
    Dev Neurobiol; 2013 Jul; 73(7):487-501. PubMed ID: 23335470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of neurite outgrowth and growth cone motility by phosphatidylinositol-3-kinase.
    Tornieri K; Welshhans K; Geddis MS; Rehder V
    Cell Motil Cytoskeleton; 2006 Apr; 63(4):173-92. PubMed ID: 16463277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of neuronal growth cone filopodia by nitric oxide depends on soluble guanylyl cyclase.
    Van Wagenen S; Rehder V
    J Neurobiol; 2001 Feb; 46(3):206-19. PubMed ID: 11169506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide release from a single cell affects filopodial motility on growth cones of neighboring neurons.
    Tornieri K; Rehder V
    Dev Neurobiol; 2007 Dec; 67(14):1932-43. PubMed ID: 17874460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of neuronal growth cone filopodia by nitric oxide.
    Van Wagenen S; Rehder V
    J Neurobiol; 1999 May; 39(2):168-85. PubMed ID: 10235672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo imaging of growth cone and filopodial dynamics: evidence for contact-mediated retraction of filopodia leading to the tiling of sibling processes.
    Baker MW; Macagno ER
    J Comp Neurol; 2007 Feb; 500(5):850-62. PubMed ID: 17177256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide acts as a slow-down and search signal in developing neurites.
    Trimm KR; Rehder V
    Eur J Neurosci; 2004 Feb; 19(4):809-18. PubMed ID: 15009128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the actin bundling protein fascin in growth cone morphogenesis: localization in filopodia and lamellipodia.
    Cohan CS; Welnhofer EA; Zhao L; Matsumura F; Yamashiro S
    Cell Motil Cytoskeleton; 2001 Feb; 48(2):109-20. PubMed ID: 11169763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PLA2 and secondary metabolites of arachidonic acid control filopodial behavior in neuronal growth cones.
    Geddis MS; Tornieri K; Giesecke A; Rehder V
    Cell Motil Cytoskeleton; 2004 Jan; 57(1):53-67. PubMed ID: 14648557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mobility and cycling of synaptic protein-containing vesicles in axonal growth cone filopodia.
    Sabo SL; McAllister AK
    Nat Neurosci; 2003 Dec; 6(12):1264-9. PubMed ID: 14608359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cdc42 participates in the regulation of ADF/cofilin and retinal growth cone filopodia by brain derived neurotrophic factor.
    Chen TJ; Gehler S; Shaw AE; Bamburg JR; Letourneau PC
    J Neurobiol; 2006 Feb; 66(2):103-14. PubMed ID: 16215999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Filopodial behavior is dependent on the phosphorylation state of neuronal growth cones.
    Cheng S; Mao J; Rehder V
    Cell Motil Cytoskeleton; 2000 Dec; 47(4):337-50. PubMed ID: 11093253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of growth cone filopodial length by carbon monoxide.
    Estes S; Artinian L; Rehder V
    Dev Neurobiol; 2017 Jun; 77(6):677-690. PubMed ID: 27513310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency-dependent and cell-specific effects of electrical activity on growth cone movements of cultured Helisoma neurons.
    Cohan CS
    J Neurobiol; 1990 Apr; 21(3):400-13. PubMed ID: 2351961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of action potentials in determining neuron-type-specific responses to nitric oxide.
    Estes S; Zhong LR; Artinian L; Tornieri K; Rehder V
    Dev Neurobiol; 2015 May; 75(5):435-51. PubMed ID: 25251837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autonomous regulation of growth cone filopodia.
    Rehder V; Cheng S
    J Neurobiol; 1998 Feb; 34(2):179-92. PubMed ID: 9468388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer simulation of nerve growth cone filopodial dynamics for visualization and analysis.
    Buettner HM
    Cell Motil Cytoskeleton; 1995; 32(3):187-204. PubMed ID: 8581975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.