These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 10602276)

  • 1. Xenopus laevis embryo development: arrest of epidermal cell differentiation by the chelating agent 1,10-phenanthroline.
    Montorzi M; Burgos MH; Falchuk KH
    Mol Reprod Dev; 2000 Jan; 55(1):75-82. PubMed ID: 10602276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wound healing ability of Xenopus laevis embryos. II. Morphological analysis of wound marginal epidermis.
    Yoshii Y; Matsuzaki T; Ishida H; Ihara S
    Dev Growth Differ; 2005 Oct; 47(8):563-72. PubMed ID: 16287487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 1,10-Phenanthroline and Xenopus laevis teratology.
    Jörnvall H; Falchuk KH; Geraci G; Vallee BL
    Biochem Biophys Res Commun; 1994 May; 200(3):1398-406. PubMed ID: 8185592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The expression of epidermal antigens in Xenopus laevis.
    Itoh K; Yamashita A; Kubota HY
    Development; 1988 Sep; 104(1):1-14. PubMed ID: 3075541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pair of rosette glands in the embryo and zoeal larva of an estuarine crab Sesarma haematocheir, and classification of the tegumental glands in the embryos of other crabs.
    Ikeda H; Hirano Y; Saigusa M
    J Morphol; 2004 Jan; 259(1):55-68. PubMed ID: 14666525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the surface morphologies of the cells in the bursa cloacalis (bursa of Fabricius) and thymus during ontogeny of the chick embryo.
    Schoenwolf GC; Singh U
    Anat Rec; 1981 Oct; 201(2):303-16. PubMed ID: 7316228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tight junction formation in early Xenopus laevis embryos: identification and ultrastructural characterization of junctional crests and junctional vesicles.
    Cardellini P; Cirelli A; Citi S
    Cell Tissue Res; 2007 Nov; 330(2):247-56. PubMed ID: 17786481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wnt6 expression in epidermis and epithelial tissues during Xenopus organogenesis.
    Lavery DL; Davenport IR; Turnbull YD; Wheeler GN; Hoppler S
    Dev Dyn; 2008 Mar; 237(3):768-79. PubMed ID: 18224714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epidermal development in Xenopus laevis: the definition of a monoclonal antibody to an epidermal marker.
    Jones EA
    J Embryol Exp Morphol; 1985 Nov; 89 Suppl():155-66. PubMed ID: 3831211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Morphogenetic and differentiation sequelae to relaxation of mechanical tensions in Xenopus laevis blastula].
    Ermakov AS; Belousov LV
    Ontogenez; 1998; 29(6):450-8. PubMed ID: 9885001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and innervation of the abdominal muscle in embryonic Xenopus laevis.
    Lynch K
    Am J Anat; 1990 Apr; 187(4):374-92. PubMed ID: 2141230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-step induction of primitive erythrocytes in Xenopus laevis embryos: signals from the vegetal endoderm and the overlying ectoderm.
    Kikkawa M; Yamazaki M; Izutsu Y; Maéno M
    Int J Dev Biol; 2001 Apr; 45(2):387-96. PubMed ID: 11330858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ptbp1 and Exosc9 knockdowns trigger skin stability defects through different pathways.
    Noiret M; Mottier S; Angrand G; Gautier-Courteille C; Lerivray H; Viet J; Paillard L; Mereau A; Hardy S; Audic Y
    Dev Biol; 2016 Jan; 409(2):489-501. PubMed ID: 26546114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wound healing ability of Xenopus laevis embryos. I. Rapid wound closure achieved by bisectional half embryos.
    Yoshii Y; Noda M; Matsuzaki T; Ihara S
    Dev Growth Differ; 2005 Oct; 47(8):553-61. PubMed ID: 16287486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional appearance of bovine epidermal keratinocytes in different stages of differentiation revealed by cell maceration and scanning electron microscopic investigation.
    Mülling CK
    Folia Morphol (Warsz); 2000; 59(4):239-46. PubMed ID: 11107694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic force microscopy of living and fixed Xenopus laevis embryos.
    Efremov YM; Pukhlyakova EA; Bagrov DV; Shaitan KV
    Micron; 2011 Dec; 42(8):840-52. PubMed ID: 21724405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrocolloid coating of Xenopus laevis embryos.
    Kampf N; Zohar C; Nussinovitch A
    Biotechnol Prog; 2000; 16(3):480-7. PubMed ID: 10835252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Artificially applied tensions normalize development of relaxed Xenopus Laevis embryos].
    Belousov LV; Ermakov AS
    Ontogenez; 2001; 32(4):288-94. PubMed ID: 11573426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scanning and transmission electron microscopic studies on the upper and lower surfaces of the frog skin epidermal cells.
    Saito H; Itoh I
    J Electron Microsc (Tokyo); 1992 Aug; 41(4):230-4. PubMed ID: 1431670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superficial cell differentiation during embryonic and postnatal development of mouse urothelium.
    Erman A; Veranic P; Psenicnik M; Jezernik K
    Tissue Cell; 2006 Oct; 38(5):293-301. PubMed ID: 16973199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.