BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 10602511)

  • 1. Relaxation of IGF2 imprinting in Wilms tumours associated with specific changes in IGF2 methylation.
    Sullivan MJ; Taniguchi T; Jhee A; Kerr N; Reeve AE
    Oncogene; 1999 Dec; 18(52):7527-34. PubMed ID: 10602511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms' tumour.
    Steenman MJ; Rainier S; Dobry CJ; Grundy P; Horon IL; Feinberg AP
    Nat Genet; 1994 Jul; 7(3):433-9. PubMed ID: 7920665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered specificity of IGF2 promoter imprinting during fetal development and onset of Wilms tumour.
    Taniguchi T; Schofield AE; Scarlett JL; Morison IM; Sullivan MJ; Reeve AE
    Oncogene; 1995 Aug; 11(4):751-6. PubMed ID: 7651739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of imprinting of IGF2 sense and antisense transcripts in Wilms' tumor.
    Vu TH; Chuyen NV; Li T; Hoffman AR
    Cancer Res; 2003 Apr; 63(8):1900-5. PubMed ID: 12702581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency and timing of loss of imprinting at 11p13 and 11p15 in Wilms' tumor development.
    Brown KW; Power F; Moore B; Charles AK; Malik KT
    Mol Cancer Res; 2008 Jul; 6(7):1114-23. PubMed ID: 18644976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic profiling maps loss of heterozygosity and defines the timing and stage dependence of epigenetic and genetic events in Wilms' tumors.
    Yuan E; Li CM; Yamashiro DJ; Kandel J; Thaker H; Murty VV; Tycko B
    Mol Cancer Res; 2005 Sep; 3(9):493-502. PubMed ID: 16179496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigenetic alteration at the DLK1-GTL2 imprinted domain in human neoplasia: analysis of neuroblastoma, phaeochromocytoma and Wilms' tumour.
    Astuti D; Latif F; Wagner K; Gentle D; Cooper WN; Catchpoole D; Grundy R; Ferguson-Smith AC; Maher ER
    Br J Cancer; 2005 Apr; 92(8):1574-80. PubMed ID: 15798773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High incidence of loss of heterozygosity and abnormal imprinting of H19 and IGF2 genes in invasive cervical carcinomas. Uncoupling of H19 and IGF2 expression and biallelic hypomethylation of H19.
    Douc-Rasy S; Barrois M; Fogel S; Ahomadegbe JC; Stéhelin D; Coll J; Riou G
    Oncogene; 1996 Jan; 12(2):423-30. PubMed ID: 8570220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms' tumour.
    Ogawa O; Eccles MR; Szeto J; McNoe LA; Yun K; Maw MA; Smith PJ; Reeve AE
    Nature; 1993 Apr; 362(6422):749-51. PubMed ID: 8097018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered expression of imprinted genes in Wilms tumors.
    Hubertus J; Lacher M; Rottenkolber M; Müller-Höcker J; Berger M; Stehr M; von Schweinitz D; Kappler R
    Oncol Rep; 2011 Mar; 25(3):817-23. PubMed ID: 21174059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-weaning diet affects genomic imprinting at the insulin-like growth factor 2 (Igf2) locus.
    Waterland RA; Lin JR; Smith CA; Jirtle RL
    Hum Mol Genet; 2006 Mar; 15(5):705-16. PubMed ID: 16421170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of 11q loss, trisomy 12, and possible 16q loss with loss of imprinting of insulin-like growth factor-II in Wilms tumor.
    Watanabe N; Nakadate H; Haruta M; Sugawara W; Sasaki F; Tsunematsu Y; Kikuta A; Fukuzawa M; Okita H; Hata J; Soejima H; Kaneko Y
    Genes Chromosomes Cancer; 2006 Jun; 45(6):592-601. PubMed ID: 16518847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequent loss of imprinting of the H19 gene is often associated with its overexpression in human lung cancers.
    Kondo M; Suzuki H; Ueda R; Osada H; Takagi K; Takahashi T; Takahashi T
    Oncogene; 1995 Mar; 10(6):1193-8. PubMed ID: 7700644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wilms tumour histology is determined by distinct types of precursor lesions and not epigenetic changes.
    Fukuzawa R; Anaka MR; Heathcott RW; McNoe LA; Morison IM; Perlman EJ; Reeve AE
    J Pathol; 2008 Aug; 215(4):377-87. PubMed ID: 18484682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of genomic imprinting in Wilms' tumour and overgrowth disorders.
    Reeve AE
    Med Pediatr Oncol; 1996 Nov; 27(5):470-5. PubMed ID: 8827076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aberrant imprinting of the insulin-like growth factor II receptor gene in Wilms' tumor.
    Xu YQ; Grundy P; Polychronakos C
    Oncogene; 1997 Mar; 14(9):1041-6. PubMed ID: 9070652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methylation status of putative differentially methylated regions of porcine IGF2 and H19.
    Han DW; Im YB; Do JT; Gupta MK; Uhm SJ; Kim JH; Schöler HR; Lee HT
    Mol Reprod Dev; 2008 May; 75(5):777-84. PubMed ID: 18247333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered gene expression and methylation of the human chromosome 11 imprinted region in small for gestational age (SGA) placentae.
    Guo L; Choufani S; Ferreira J; Smith A; Chitayat D; Shuman C; Uxa R; Keating S; Kingdom J; Weksberg R
    Dev Biol; 2008 Aug; 320(1):79-91. PubMed ID: 18550048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatin structure and imprinting: developmental control of DNase-I sensitivity in the mouse insulin-like growth factor 2 gene.
    Feil R; Handel MA; Allen ND; Reik W
    Dev Genet; 1995; 17(3):240-52. PubMed ID: 8565330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imprinting, expression, and localisation of DLK1 in Wilms tumours.
    Fukuzawa R; Heathcott RW; Morison IM; Reeve AE
    J Clin Pathol; 2005 Feb; 58(2):145-50. PubMed ID: 15677533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.