These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 10602702)

  • 21. 3D-QSAR study of benzene sulfonamide analogs as carbonic anhydrase II inhibitors.
    Sethi KK; Verma SM; Prasanthi N; Sahoo SK; Parhi RN; Suresh P
    Bioorg Med Chem Lett; 2010 May; 20(10):3089-93. PubMed ID: 20443227
    [TBL] [Abstract][Full Text] [Related]  

  • 22. QSAR modeling using chirality descriptors derived from molecular topology.
    Golbraikh A; Tropsha A
    J Chem Inf Comput Sci; 2003; 43(1):144-54. PubMed ID: 12546547
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of Topological, Electronic, Geometrical, Constitutional and Quantum Chemical Based Descriptors in QSAR: mPGES-1 as a Case Study.
    Gupta A; Kumar V; Aparoy P
    Curr Top Med Chem; 2018; 18(13):1075-1090. PubMed ID: 30027847
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative QSAR of the sulfonamide function.
    Hansch C
    Farmaco; 2003 Sep; 58(9):625-9. PubMed ID: 13679154
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bond-based 3D-chiral linear indices: theory and QSAR applications to central chirality codification.
    Castillo-Garit JA; Marrero-Ponce Y; Torrens F; García-Domenech R; Romero-Zaldivar V
    J Comput Chem; 2008 Nov; 29(15):2500-12. PubMed ID: 18470969
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of QSAR models based on combinations of genetic algorithm, stepwise multiple linear regression, and artificial neural network methods to predict Kd of some derivatives of aromatic sulfonamides as carbonic anhydrase II inhibitors.
    Maleki A; Daraei H; Alaei L; Faraji A
    Bioorg Khim; 2014; 40(1):70-84. PubMed ID: 25898725
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toward generating simpler QSAR models: nonlinear multivariate regression versus several neural network ensembles and some related methods.
    Lucić B; Nadramija D; Basic I; Trinajstić N
    J Chem Inf Comput Sci; 2003; 43(4):1094-102. PubMed ID: 12870898
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative Structure-Activity Relationships of Aquatic Narcosis: A Review.
    Adhikari C; Mishra BK
    Curr Comput Aided Drug Des; 2018; 14(1):7-28. PubMed ID: 28699497
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combinatorial QSAR of ambergris fragrance compounds.
    Kovatcheva A; Golbraikh A; Oloff S; Xiao YD; Zheng W; Wolschann P; Buchbauer G; Tropsha A
    J Chem Inf Comput Sci; 2004; 44(2):582-95. PubMed ID: 15032539
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Internal Relation between Quantum Chemical Descriptors and Empirical Constants of Polychlorinated Compounds.
    Fei J; Mao Q; Peng L; Ye T; Yang Y; Luo S
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30423794
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of active molecular sites using quantum-self-similarity measures.
    Amat L; Besalú E; Carbó-Dorca R; Ponec R
    J Chem Inf Comput Sci; 2001; 41(4):978-91. PubMed ID: 11500114
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular similarity matrices and quantitative structure-activity relationships: a case study with methodological implications.
    Benigni R; Cotta-Ramusino M; Giorgi F; Gallo G
    J Med Chem; 1995 Feb; 38(4):629-35. PubMed ID: 7861411
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A physically interpretable quantum-theoretic QSAR for some carbonic anhydrase inhibitors with diverse aromatic rings, obtained by a new QSAR procedure.
    Clare BW; Supuran CT
    Bioorg Med Chem; 2005 Mar; 13(6):2197-211. PubMed ID: 15727872
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Linear QSAR regression models for the prediction of bioconcentration factors by physicochemical properties and structural theoretical molecular descriptors.
    Papa E; Dearden JC; Gramatica P
    Chemosphere; 2007 Feb; 67(2):351-8. PubMed ID: 17109926
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling antimalarial activity: application of Kinetic Energy Density Quantum Similarity Measures as descriptors in QSAR.
    Gironés X; Gallegos A; Carbó-Dorca R
    J Chem Inf Comput Sci; 2000; 40(6):1400-7. PubMed ID: 11128098
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combined QM/MM (ONIOM) and QSAR approach to the study of complex formation of matrix metalloproteinase‑9 with a series of biphenylsulfonamides−LERE-QSAR analysis (V).
    Yoshida T; Hitaoka S; Mashima A; Sugimoto T; Matoba H; Chuman H
    J Phys Chem B; 2012 Aug; 116(34):10283-9. PubMed ID: 22845734
    [TBL] [Abstract][Full Text] [Related]  

  • 37. QSAR by LFER model of HIV protease inhibitor mannitol derivatives using FA-MLR, PCRA, and PLS techniques.
    Leonard JT; Roy K
    Bioorg Med Chem; 2006 Feb; 14(4):1039-46. PubMed ID: 16213730
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anticancer activity of selected phenolic compounds: QSAR studies using ridge regression and neural networks.
    Nandi S; Vracko M; Bagchi MC
    Chem Biol Drug Des; 2007 Nov; 70(5):424-36. PubMed ID: 17949360
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel approach to evolutionary neural network based descriptor selection and QSAR model development.
    Debeljak Z; Marohnić V; Srecnik G; Medić-Sarić M
    J Comput Aided Mol Des; 2005 Dec; 19(12):835-55. PubMed ID: 16607572
    [TBL] [Abstract][Full Text] [Related]  

  • 40. QSAR with quantum topological molecular similarity indices: toxicity of aromatic aldehydes to Tetrahymena pyriformis.
    Kar S; Harding AP; Roy K; Popelier PL
    SAR QSAR Environ Res; 2010 Jan; 21(1):149-68. PubMed ID: 20373218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.