These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 10602759)

  • 21. Formation pattern and regulatory mechanisms of pollen wall in Arabidopsis.
    Ma X; Wu Y; Zhang G
    J Plant Physiol; 2021 May; 260():153388. PubMed ID: 33706055
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Correlation between pollen aperture pattern and callose deposition in late tetrad stage in three species producing atypical pollen grains.
    Albert B; Ressayre A; Nadot S
    Am J Bot; 2011 Feb; 98(2):189-96. PubMed ID: 21613108
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New trends in Passiflora L. pollen grains: morphological/aperture aspects and wall layer considerations.
    Richardo J; Silvério A
    Protoplasma; 2019 Jul; 256(4):923-939. PubMed ID: 30719577
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A cytological study of anther and pollen development in Camellia oleifera.
    Gao C; Yuan DY; Wang BF; Yang Y; Liu DM; Han ZQ
    Genet Mol Res; 2015 Jul; 14(3):8755-65. PubMed ID: 26345807
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant.
    Vizcay-Barrena G; Wilson ZA
    J Exp Bot; 2006; 57(11):2709-17. PubMed ID: 16908508
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microspore development in Annona (Annonaceae): differences between monad and tetrad pollen.
    Lora J; Herrero M; Hormaza JI
    Am J Bot; 2014 Sep; 101(9):1508-18. PubMed ID: 25253711
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [The distribution of ATPase in developmental anther of rice].
    Wang YY; Lü D; Wei DM; Lin WX; Tian HQ
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Feb; 32(1):113-22. PubMed ID: 16477140
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrastructural aspects of pollen ontogeny in an endangered plant species, Pancratium maritimum L. (Amaryllidaceae).
    Tütüncü Konyar S
    Protoplasma; 2017 Mar; 254(2):881-900. PubMed ID: 27460470
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Postmeiotic cytokinesis and pollen aperture number determination in eudicots: effect of the cleavage wall number.
    Ressayre A; Mignot A; Siljak-Yakovlev S; Raquin C
    Protoplasma; 2003 Jun; 221(3-4):257-68. PubMed ID: 12802633
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pollen wall development in Impatiens glandulifera: exine substructure and underlying mechanisms.
    Gabarayeva NI; Britski DA; Grigorjeva VV
    Protoplasma; 2024 Jan; 261(1):111-124. PubMed ID: 37542569
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Release of developmental constraints on tetrad shape is confirmed in inaperturate pollen of Potamogeton.
    Nunes EL; Bona C; Moço MC; Coan AI
    Ann Bot; 2009 Oct; 104(5):1011-5. PubMed ID: 19567417
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NERD1 is required for primexine formation and plasma membrane undulation during microsporogenesis in
    Xu D; Mondol PC; Ishiguro S; Shi J; Zhang D; Liang W
    aBIOTECH; 2020 Oct; 1(4):205-218. PubMed ID: 36304126
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phylogenetic comparative analysis of microsporogenesis in angiosperms with a focus on monocots.
    Nadot S; Furness CA; Sannier J; Penet L; Triki-Teurtroy S; Albert B; Ressayre A
    Am J Bot; 2008 Nov; 95(11):1426-36. PubMed ID: 21628150
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formation pattern in five types of pollen tetrad in Pseuduvaria trimera (Annonaceae).
    Li B; Xu F
    Protoplasma; 2019 Jan; 256(1):53-68. PubMed ID: 29946905
    [TBL] [Abstract][Full Text] [Related]  

  • 35. THE EVOLUTION OF POLLEN TETRADS IN ONAGRACEAE.
    Skvarla JJ; Raven PH; Praglowski J
    Am J Bot; 1975 Jan; 62(1):6-35. PubMed ID: 30139106
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigating the effect of heavy metals on developmental stages of anther and pollen in Chenopodium botrys L. (Chenopodiaceae).
    Yousefi N; Chehregani A; Malayeri B; Lorestani B; Cheraghi M
    Biol Trace Elem Res; 2011 Jun; 140(3):368-76. PubMed ID: 20499206
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anther development of maize (Zea mays) and longstamen rice (Oryza longistaminata) revealed by cryo-SEM, with foci on locular dehydration and pollen arrangement.
    Tsou CH; Cheng PC; Tseng CM; Yen HJ; Fu YL; You TR; Walden DB
    Plant Reprod; 2015 Mar; 28(1):47-60. PubMed ID: 25666915
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The ultrastructural observation of anthers of Chinese cabbage's mail-sterility].
    Xie CT; Yang YH; Ge LL; Wang R; Tian HQ
    Shi Yan Sheng Wu Xue Bao; 2005 Dec; 38(6):501-12. PubMed ID: 16416967
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sporoderm and tapetum development in Eupomatia laurina (Eupomatiaceae). An interpretation.
    Gabarayeva NI; Grigorjeva VV
    Protoplasma; 2014 Nov; 251(6):1321-45. PubMed ID: 24671645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Receptor-like protein kinase 2 (RPK 2) is a novel factor controlling anther development in Arabidopsis thaliana.
    Mizuno S; Osakabe Y; Maruyama K; Ito T; Osakabe K; Sato T; Shinozaki K; Yamaguchi-Shinozaki K
    Plant J; 2007 Jun; 50(5):751-66. PubMed ID: 17419837
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.