BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 10603261)

  • 1. A method for evaluating phylogenetic relationship of alpha-satellite DNA suprachromosomal family by nucleotide frequency calculation.
    Kato M; Kato A; Shimizu N
    Mol Phylogenet Evol; 1999 Nov; 13(2):329-35. PubMed ID: 10603261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concerted evolution of primate alpha satellite DNA. Evidence for an ancestral sequence shared by gorilla and human X chromosome alpha satellite.
    Durfy SJ; Willard HF
    J Mol Biol; 1990 Dec; 216(3):555-66. PubMed ID: 2258932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a chromosome-specific chimpanzee alpha satellite subset: evolutionary relationship to subsets on human chromosomes.
    Warburton PE; Haaf T; Gosden J; Lawson D; Willard HF
    Genomics; 1996 Apr; 33(2):220-8. PubMed ID: 8660971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Segment substitutions in alpha satellite DNA. Unusual structure of human chromosome 3-specific alpha satellite repeat unit.
    Alexandrov IA; Mashkova TD; Romanova LY; Yurov YB; Kisselev LL
    J Mol Biol; 1993 May; 231(2):516-20. PubMed ID: 8510162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosome-specific alpha-satellite DNA from the centromere of chimpanzee chromosome 4.
    Haaf T; Willard HF
    Chromosoma; 1997 Sep; 106(4):226-32. PubMed ID: 9254724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A subterminal satellite located adjacent to telomeres in chimpanzees is absent from the human genome.
    Royle NJ; Baird DM; Jeffreys AJ
    Nat Genet; 1994 Jan; 6(1):52-6. PubMed ID: 8136835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary turnover of two pBuM satellite DNA subfamilies in the Drosophila buzzatii species cluster (repleta group): from alpha to alpha/beta arrays.
    Kuhn GC; Sene FM
    Gene; 2005 Apr; 349():77-85. PubMed ID: 15777676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of beta satellite DNA sequences: evidence for duplication-mediated repeat amplification and spreading.
    Cardone MF; Ballarati L; Ventura M; Rocchi M; Marozzi A; Ginelli E; Meneveri R
    Mol Biol Evol; 2004 Sep; 21(9):1792-9. PubMed ID: 15201396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intra-specific variability and unusual organization of the repetitive units in a satellite DNA from Rana dalmatina: molecular evidence of a new mechanism of DNA repair acting on satellite DNA.
    Feliciello I; Picariello O; Chinali G
    Gene; 2006 Nov; 383():81-92. PubMed ID: 16956734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New satellite DNA in Lacerta s. str. lizards (Sauria: Lacertidae): evolutionary pathways and phylogenetic impact.
    Ciobanu D; Grechko VV; Darevsky IS; Kramerov DA
    J Exp Zool B Mol Dev Evol; 2004 Nov; 302(6):505-16. PubMed ID: 15390352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progressive proximal expansion of the primate X chromosome centromere.
    Schueler MG; Dunn JM; Bird CP; Ross MT; Viggiano L; ; Rocchi M; Willard HF; Green ED
    Proc Natl Acad Sci U S A; 2005 Jul; 102(30):10563-8. PubMed ID: 16030148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Molecular evolution of satellite DNA CLsat in lizards of the Darevskia species (Sauria: Lacertidae): correlation with species diversity].
    Chobanu DG; Grechko VV; Darevskiĭ IS
    Genetika; 2003 Nov; 39(11):1527-41. PubMed ID: 14714467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Key-string algorithm--novel approach to computational analysis of repetitive sequences in human centromeric DNA.
    Rosandić M; Paar V; Gluncić M; Basar I; Pavin N
    Croat Med J; 2003 Aug; 44(4):386-406. PubMed ID: 12950141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The utility of SATA satellite DNA sequences for inferring phylogenetic relationships among the three major genera of tilapiine cichlid fishes.
    Franck JP; Kornfield I; Wright JM
    Mol Phylogenet Evol; 1994 Mar; 3(1):10-6. PubMed ID: 7545936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The phylogeny of human chromosome specific alpha satellites.
    Alexandrov IA; Mitkevich SP; Yurov YB
    Chromosoma; 1988; 96(6):443-53. PubMed ID: 3219915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A tandemly repetitive centromeric DNA sequence of the fish Hoplias malabaricus (Characiformes: Erythrinidae) is derived from 5S rDNA.
    Martins C; Ferreira IA; Oliveira C; Foresti F; Galetti PM
    Genetica; 2006 May; 127(1-3):133-41. PubMed ID: 16850219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A clade of New World primates with distinctive alphoid satellite DNAs.
    Alves G; Seuánez HN; Fanning T
    Mol Phylogenet Evol; 1998 Apr; 9(2):220-4. PubMed ID: 9562981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleotide sequence of satellite I and II DNA from alpaca (Lama pacos) genome.
    Sałuda-Gorgul A; Jaworski J; Greger J
    Acta Biochim Pol; 1990; 37(2):283-97. PubMed ID: 2072986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel GC-rich human macrosatellite VNTR in Xq24 is differentially methylated on active and inactive X chromosomes.
    Giacalone J; Friedes J; Francke U
    Nat Genet; 1992 May; 1(2):137-43. PubMed ID: 1302007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An algorithmic analysis of the role of unequal crossover in alpha-satellite DNA evolution.
    Alkan C; Bailey JA; Eichler EE; Sahinalp SC; Tuzun E
    Genome Inform; 2002; 13():93-102. PubMed ID: 14571378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.