These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 10603335)
61. High levels of maternally transferred mercury disrupt magnetic responses of snapping turtle hatchlings (Chelydra serpentina). Landler L; Painter MS; Coe BH; Youmans PW; Hopkins WA; Phillips JB Environ Pollut; 2017 Sep; 228():19-25. PubMed ID: 28501632 [TBL] [Abstract][Full Text] [Related]
62. Incubation and water temperatures influence the performances of loggerhead sea turtle hatchlings during the dispersal phase. Kobayashi S; Aokura N; Fujimoto R; Mori K; Kumazawa Y; Ando Y; Matsuda T; Nitto H; Arai K; Watanabe G; Saito T Sci Rep; 2018 Aug; 8(1):11911. PubMed ID: 30093615 [TBL] [Abstract][Full Text] [Related]
63. Effects of lead on behavior, growth, and survival of hatchling slider turtles. Burger J; Carruth-Hinchey C; Ondroff J; McMahon M; Gibbons JW; Gochfeld M J Toxicol Environ Health A; 1998 Dec; 55(7):495-502. PubMed ID: 9860323 [TBL] [Abstract][Full Text] [Related]
64. Ultrastructural morphology of the shell and shell membrane of eggs of common snapping turtles (Chelydra serpentina). Packard MJ J Morphol; 1980 Aug; 165(2):187-204. PubMed ID: 7452729 [TBL] [Abstract][Full Text] [Related]
65. The impact of extended preovipositional arrest on embryonic development and hatchling fitness in the flatback sea turtle. Rings CC; Rafferty AR; Guinea ML; Reina RD Physiol Biochem Zool; 2015; 88(2):116-27. PubMed ID: 25730267 [TBL] [Abstract][Full Text] [Related]
66. Development-specific transcriptomic profiling suggests new mechanisms for anoxic survival in the ventricle of overwintering turtles. Fanter CE; Lin Z; Keenan SW; Janzen FJ; Mitchell TS; Warren DE J Exp Biol; 2020 Feb; 223(Pt 4):. PubMed ID: 31862849 [TBL] [Abstract][Full Text] [Related]
67. Osmoregulation and salinity tolerance in the Antarctic midge, Belgica antarctica: seawater exposure confers enhanced tolerance to freezing and dehydration. Elnitsky MA; Benoit JB; Lopez-Martinez G; Denlinger DL; Lee RE J Exp Biol; 2009 Sep; 212(17):2864-71. PubMed ID: 19684222 [TBL] [Abstract][Full Text] [Related]
68. Lymphoid aggregates in gonads of embryos, hatchlings, and young of turtles with temperature-dependent sex determination. Belaïd B; Cong HN; Devilliers G; Richard-Mercier N; Pieau C; Dorizzi M J Exp Zool A Comp Exp Biol; 2004 Feb; 301(2):160-8. PubMed ID: 14743515 [TBL] [Abstract][Full Text] [Related]
69. Phenotypic effects of thermal mean and fluctuations on embryonic development and hatchling traits in a lacertid lizard, Takydromus septentrionalis. Du WG; Feng JH J Exp Zool A Ecol Genet Physiol; 2008 Mar; 309(3):138-46. PubMed ID: 18236390 [TBL] [Abstract][Full Text] [Related]
70. Possible adaptive value of water exchanges in flexible-shelled eggs of turtles. Packard GC; Packard MJ; Boardman TJ; Ashen MD Science; 1981 Jul; 213(4506):471-3. PubMed ID: 17760193 [TBL] [Abstract][Full Text] [Related]
71. EXPERIMENTAL EVIDENCE FOR THE EVOLUTIONARY SIGNIFICANCE OF TEMPERATURE-DEPENDENT SEX DETERMINATION. Janzen FJ Evolution; 1995 Oct; 49(5):864-873. PubMed ID: 28564861 [TBL] [Abstract][Full Text] [Related]
72. Phenotypic plasticity in the common snapping turtle (Chelydra serpentina): long-term physiological effects of chronic hypoxia during embryonic development. Wearing OH; Eme J; Rhen T; Crossley DA Am J Physiol Regul Integr Comp Physiol; 2016 Jan; 310(2):R176-84. PubMed ID: 26608655 [TBL] [Abstract][Full Text] [Related]
73. Characteristics of gonads and oviducts in hatchlings and young of Chelydra serpentina resulting from three incubation temperatures. Yntema CL J Morphol; 1981 Mar; 167(3):297-304. PubMed ID: 7241601 [TBL] [Abstract][Full Text] [Related]
74. Energy and water flux during terrestrial estivation and overland movement in a freshwater turtle. Roe JH; Georges A; Green B Physiol Biochem Zool; 2008; 81(5):570-83. PubMed ID: 18717626 [TBL] [Abstract][Full Text] [Related]
75. Egg components and hatchling lipid reserves: parental investment in kinosternid turtles from the southeastern United States. Nagle RD; Burke VJ; Congdon JD Comp Biochem Physiol B Biochem Mol Biol; 1998 May; 120(1):145-52. PubMed ID: 9787783 [TBL] [Abstract][Full Text] [Related]
76. Lipid provisioning of turtle eggs and hatchlings: total lipid, phospholipid, triacylglycerol and triacylglycerol fatty acids. Rowe JW; Holy L; Ballinger RE; Stanley-Samuelson D Comp Biochem Physiol B Biochem Mol Biol; 1995 Oct; 112(2):323-30. PubMed ID: 7584861 [TBL] [Abstract][Full Text] [Related]
78. Resistance of the shell membrane and mineral layer to diffusion of oxygen and water in flexible-shelled eggs of the snapping turtle (Chelydra serpentina). Feder ME; Satel SL; Gibbs AG Respir Physiol; 1982 Sep; 49(3):179-91. PubMed ID: 6890707 [TBL] [Abstract][Full Text] [Related]
79. The effects of temperature, desiccation, and body mass on the locomotion of the terrestrial isopod, Porcellio laevis. Dailey TM; Claussen DL; Ladd GB; Buckner ST Comp Biochem Physiol A Mol Integr Physiol; 2009 Jun; 153(2):162-6. PubMed ID: 19535030 [TBL] [Abstract][Full Text] [Related]
80. Aquatic and terrestrial locomotory energetics in a toad and a turtle: a search for generalisations among ectotherms. Baudinette RV; Miller AM; Sarre MP Physiol Biochem Zool; 2000; 73(6):672-82. PubMed ID: 11121342 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]