These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 10604288)
1. Resonance raman spectroscopy and quantum chemical modeling studies of protein-astaxanthin interactions in alpha-crustacyanin (major blue carotenoprotein complex in carapace of lobster, Homarus gammarus). Weesie RJ; Merlin JC; de Groot HJ; Britton G; Lugtenburg J; Jansen FJ; Cornard JP Biospectroscopy; 1999; 5(6):358-70. PubMed ID: 10604288 [TBL] [Abstract][Full Text] [Related]
2. Spectroscopy and quantum chemical modeling reveal a predominant contribution of excitonic interactions to the bathochromic shift in alpha-crustacyanin, the blue carotenoprotein in the carapace of the lobster Homarus gammarus. van Wijk AA; Spaans A; Uzunbajakava N; Otto C; de Groot HJ; Lugtenburg J; Buda F J Am Chem Soc; 2005 Feb; 127(5):1438-45. PubMed ID: 15686376 [TBL] [Abstract][Full Text] [Related]
3. 13C Magic angle spinning NMR analysis and quantum chemical modeling of the bathochromic shift of astaxanthin in alpha-crustacyanin, the blue carotenoprotein complex in the carapace of the lobster Homarus gammarus. Weesie RJ; Jansen FJ; Merlin JC; Lugtenburg J; Britton G; de Groot HJ Biochemistry; 1997 Jun; 36(24):7288-96. PubMed ID: 9200677 [TBL] [Abstract][Full Text] [Related]
4. Protein-chromophore interactions in alpha-crustacyanin, the major blue carotenoprotein from the carapace of the lobster, Homarus gammarus. A study by 13C magic angle spinning NMR. Weesie RJ; Askin D; Jansen FJ; de Groot HJ; Lugtenburg J; Britton G FEBS Lett; 1995 Mar; 362(1):34-8. PubMed ID: 7698348 [TBL] [Abstract][Full Text] [Related]
5. Unravelling the structural chemistry of the colouration mechanism in lobster shell. Chayen NE; Cianci M; Grossmann JG; Habash J; Helliwell JR; Nneji GA; Raftery J; Rizkallah PJ; Zagalsky PF Acta Crystallogr D Biol Crystallogr; 2003 Dec; 59(Pt 12):2072-82. PubMed ID: 14646064 [TBL] [Abstract][Full Text] [Related]
6. Excited-state modeling of the astaxanthin dimer predicts a minor contribution from exciton coupling to the bathochromic shift in crustacyanin. Strambi A; Durbeej B J Phys Chem B; 2009 Apr; 113(15):5311-7. PubMed ID: 19317475 [TBL] [Abstract][Full Text] [Related]
7. A study of protein-carotenoid interactions in the astaxanthin-protein crustacyanin by absorption and Stark spectroscopy; evidence for the presence of three spectrally distinct species. Krawczyk S; Britton G Biochim Biophys Acta; 2001 Jan; 1544(1-2):301-10. PubMed ID: 11341939 [TBL] [Abstract][Full Text] [Related]
8. Origin of the bathochromic shift of astaxanthin in lobster protein: 2D electronic spectroscopy investigation of β-crustacyanin. Christensson N; Žídek K; Magdaong NC; LaFountain AM; Frank HA; Zigmantas D J Phys Chem B; 2013 Sep; 117(38):11209-19. PubMed ID: 23510436 [TBL] [Abstract][Full Text] [Related]
10. beta-Crustacyanin, the blue-purple carotenoprotein of lobster carapace: consideration of the bathochromic shift of the protein-bound astaxanthin. Zagalsky PF Acta Crystallogr D Biol Crystallogr; 2003 Aug; 59(Pt 8):1529-31. PubMed ID: 12876374 [TBL] [Abstract][Full Text] [Related]
11. Protein-bound chromophores astaxanthin and phytochromobilin: excited state quantum chemical studies. Durbeej B; Eriksson LA Phys Chem Chem Phys; 2006 Sep; 8(35):4053-71. PubMed ID: 17028694 [TBL] [Abstract][Full Text] [Related]
12. Characterisation of the carotenoprotein found in carapace shells of Jasus lalandii. Timme E; Walwyn D; Bailey A Comp Biochem Physiol B Biochem Mol Biol; 2009 May; 153(1):39-42. PubMed ID: 19416706 [TBL] [Abstract][Full Text] [Related]
13. Complete sequence and model for the C1 subunit of the carotenoprotein, crustacyanin, and model for the dimer, beta-crustacyanin, formed from the C1 and A2 subunits with astaxanthin. Keen JN; Caceres I; Eliopoulos EE; Zagalsky PF; Findlay JB Eur J Biochem; 1991 Nov; 202(1):31-40. PubMed ID: 1935978 [TBL] [Abstract][Full Text] [Related]
14. Femtosecond time-resolved absorption spectroscopy of astaxanthin in solution and in alpha-crustacyanin. Ilagan RP; Christensen RL; Chapp TW; Gibson GN; Pascher T; Polívka T; Frank HA J Phys Chem A; 2005 Apr; 109(14):3120-7. PubMed ID: 16833638 [TBL] [Abstract][Full Text] [Related]
15. The lobster carapace carotenoprotein, alpha-crustacyanin. A possible role for tryptophan in the bathochromic spectral shift of protein-bound astaxanthin. Zagalsky PF; Eliopoulos EE; Findlay JB Biochem J; 1991 Feb; 274 ( Pt 1)(Pt 1):79-83. PubMed ID: 2001254 [TBL] [Abstract][Full Text] [Related]
16. Unravelling the chemical basis of the bathochromic shift in the lobster carapace; new crystal structures of unbound astaxanthin, canthaxanthin and zeaxanthin. Bartalucci G; Coppin J; Fisher S; Hall G; Helliwell JR; Helliwell M; Liaaen-Jensen S Acta Crystallogr B; 2007 Apr; 63(Pt 2):328-37. PubMed ID: 17374944 [TBL] [Abstract][Full Text] [Related]
17. On the origin and variation of colors in lobster carapace. Begum S; Cianci M; Durbeej B; Falklöf O; Hädener A; Helliwell JR; Helliwell M; Regan AC; Ian F Watt C Phys Chem Chem Phys; 2015 Jul; 17(26):16723-32. PubMed ID: 25797168 [TBL] [Abstract][Full Text] [Related]
18. Theoretical spectroscopy of astaxanthin in crustacyanin proteins: absorption, circular dichroism, and nuclear magnetic resonance. Neugebauer J; Veldstra J; Buda F J Phys Chem B; 2011 Mar; 115(12):3216-25. PubMed ID: 21391640 [TBL] [Abstract][Full Text] [Related]