These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 106044)

  • 1. Influence of the lactose plasmid on the metabolism of galactose by Streptococcus lactis.
    LeBlanc DJ; Crow VL; Lee LN; Garon CF
    J Bacteriol; 1979 Feb; 137(2):878-84. PubMed ID: 106044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmid linkage of the D-tagatose 6-phosphate pathway in Streptococcus lactis: effect on lactose and galactose metabolism.
    Crow VL; Davey GP; Pearce LE; Thomas TD
    J Bacteriol; 1983 Jan; 153(1):76-83. PubMed ID: 6294064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of lactose-fermenting revertants from lactose-negative Streptococcus lactis C2 mutants.
    Cords BR; McKay LL
    J Bacteriol; 1974 Sep; 119(3):830-9. PubMed ID: 4368487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct galactose phosphoenolpyruvate-dependent phosphotransferase system in Streptococcus lactis.
    Park YH; McKay LL
    J Bacteriol; 1982 Feb; 149(2):420-5. PubMed ID: 6799488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of lactose-phosphoenolpyruvate-dependent phosphotransferase system and beta-D-phosphogalactoside galactohydrolase activities in Lactobacillus casei.
    Chassy BM; Thompson J
    J Bacteriol; 1983 Jun; 154(3):1195-203. PubMed ID: 6406426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus.
    Solem C; Koebmann B; Jensen PR
    Biotechnol Appl Biochem; 2008 May; 50(Pt 1):35-40. PubMed ID: 17822381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathways for lactose/galactose catabolism by Streptococcus salivarius.
    Chen YY; Betzenhauser MJ; Snyder JA; Burne RA
    FEMS Microbiol Lett; 2002 Mar; 209(1):75-9. PubMed ID: 12007657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of lac+ transductants of Streptococcus lactis.
    Molskness TA; Sandine WE; Brown LR
    Appl Microbiol; 1974 Nov; 28(5):753-8. PubMed ID: 4216286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Galactose metabolism by Streptococcus mutans.
    Abranches J; Chen YY; Burne RA
    Appl Environ Microbiol; 2004 Oct; 70(10):6047-52. PubMed ID: 15466549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards enhanced galactose utilization by Lactococcus lactis.
    Neves AR; Pool WA; Solopova A; Kok J; Santos H; Kuipers OP
    Appl Environ Microbiol; 2010 Nov; 76(21):7048-60. PubMed ID: 20817811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nisin independent induction of the nisA promoter in Lactococcus lactis during growth in lactose or galactose.
    Chandrapati S; O'Sullivan DJ
    FEMS Microbiol Lett; 1999 Jan; 170(1):191-8. PubMed ID: 9919668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transformation of Streptococcus sanguis Challis with Streptococcus lactis plasmid DNA.
    Harlander SK; McKay LL
    Appl Environ Microbiol; 1984 Aug; 48(2):342-6. PubMed ID: 6435522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lactose metabolism in Streptococcus lactis: studies with a mutant lacking glucokinase and mannose-phosphotransferase activities.
    Thompson J; Chassy BM; Egan W
    J Bacteriol; 1985 Apr; 162(1):217-23. PubMed ID: 3920203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a galactokinase-positive recombinant strain of Streptococcus thermophilus.
    Vaillancourt K; LeMay JD; Lamoureux M; Frenette M; Moineau S; Vadeboncoeur C
    Appl Environ Microbiol; 2004 Aug; 70(8):4596-603. PubMed ID: 15294791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of a Streptococcus lactis strain that ferments lactose slowly.
    Crow VL; Thomas TD
    J Bacteriol; 1984 Jan; 157(1):28-34. PubMed ID: 6418719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of phosphoenolpyruvate in the catabolism of caries-conducive disaccharides by Streptococcus mutans: lactose transport.
    Calmes R
    Infect Immun; 1978 Mar; 19(3):934-42. PubMed ID: 246429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular cloning of the lactose-metabolizing genes from Streptococcus lactis.
    Harlander SK; McKay LL; Schachtele CF
    Appl Environ Microbiol; 1984 Aug; 48(2):347-51. PubMed ID: 6091547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmids in Streptococcus lactis: evidence that lactose metabolism and proteinase activity are plasmid linked.
    Efstathiou JD; McKay LL
    Appl Environ Microbiol; 1976 Jul; 32(1):38-44. PubMed ID: 823866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Galactose fermentation by Streptococcus lactis and Streptococcus cremoris: pathways, products, and regulation.
    Thomas TD; Turner KW; Crow VL
    J Bacteriol; 1980 Nov; 144(2):672-82. PubMed ID: 6776093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional regulation and evolution of lactose genes in the galactose-lactose operon of Lactococcus lactis NCDO2054.
    Vaughan EE; Pridmore RD; Mollet B
    J Bacteriol; 1998 Sep; 180(18):4893-902. PubMed ID: 9733693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.