BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 10604655)

  • 1. Colocalization of synapsin and actin during synaptic vesicle recycling.
    Bloom O; Evergren E; Tomilin N; Kjaerulff O; Löw P; Brodin L; Pieribone VA; Greengard P; Shupliakov O
    J Cell Biol; 2003 May; 161(4):737-47. PubMed ID: 12756235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Location and function of vesicle clusters, active zones and Ca2+ channels in the lamprey presynaptic terminal.
    Photowala H; Freed R; Alford S
    J Physiol; 2005 Nov; 569(Pt 1):119-35. PubMed ID: 16141275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SNAP-29-mediated modulation of synaptic transmission in cultured hippocampal neurons.
    Pan PY; Cai Q; Lin L; Lu PH; Duan S; Sheng ZH
    J Biol Chem; 2005 Jul; 280(27):25769-79. PubMed ID: 15890653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualization of the dynamics of synaptic vesicle and plasma membrane proteins in living axons.
    Nakata T; Terada S; Hirokawa N
    J Cell Biol; 1998 Feb; 140(3):659-74. PubMed ID: 9456325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complexin has a dual synaptic function as checkpoint protein in vesicle priming and as a promoter of vesicle fusion.
    López-Murcia FJ; Lin KH; Berns MMM; Ranjan M; Lipstein N; Neher E; Brose N; Reim K; Taschenberger H
    Proc Natl Acad Sci U S A; 2024 Apr; 121(15):e2320505121. PubMed ID: 38568977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of miR-1 in the heart attenuates hippocampal synaptic vesicle exocytosis by the posttranscriptional regulation of SNAP-25 through the transportation of exosomes.
    Duan MJ; Yan ML; Wang Q; Mao M; Su D; Sun LL; Li KX; Qu Y; Sun Q; Zhang XY; Huang SY; Ma JC; Ban T; Ai J
    Cell Commun Signal; 2018 Nov; 16(1):91. PubMed ID: 30497498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Friends and foes in synaptic transmission: the role of tomosyn in vesicle priming.
    Ashery U; Bielopolski N; Barak B; Yizhar O
    Trends Neurosci; 2009 May; 32(5):275-82. PubMed ID: 19307030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cysteine string protein α: a new role in vesicle recycling.
    Sheng J; Wu LG
    Neuron; 2012 Apr; 74(1):6-8. PubMed ID: 22500624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific Extracellular Vesicles, Generated and Operating at Synapses, Contribute to Neuronal Effects and Signaling.
    Meldolesi J
    Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated Detection and Localization of Synaptic Vesicles in Electron Microscopy Images.
    Imbrosci B; Schmitz D; Orlando M
    eNeuro; 2022; 9(1):. PubMed ID: 34983830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synapse-specific trapping of SNARE machinery proteins in the anesthetized
    Hines AD; Kewin AB; Van De Poll MN; Anggono V; Bademosi AT; van Swinderen B
    J Neurosci; 2024 May; ():. PubMed ID: 38749704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic disorders of neurotransmitter release machinery.
    Uzay B; Kavalali ET
    Front Synaptic Neurosci; 2023; 15():1148957. PubMed ID: 37066095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 27-Hydroxycholesterol Alters Synaptic Structural and Functional Plasticity in Hippocampal Neuronal Cultures.
    Wang Y; An Y; Zhang D; Yu H; Zhang X; Wang Y; Tao L; Xiao R
    J Neuropathol Exp Neurol; 2019 Mar; 78(3):238-247. PubMed ID: 30753597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting synaptic pathology with a novel affinity mass spectrometry approach.
    Brinkmalm A; Brinkmalm G; Honer WG; Moreno JA; Jakobsson J; Mallucci GR; Zetterberg H; Blennow K; Öhrfelt A
    Mol Cell Proteomics; 2014 Oct; 13(10):2584-92. PubMed ID: 24973420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryoloading: introducing large molecules into live synaptosomes.
    Nath AR; Chen RH; Stanley EF
    Front Cell Neurosci; 2014; 8():4. PubMed ID: 24478628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Drosophila SNAP-25 null mutant reveals context-dependent redundancy with SNAP-24 in neurotransmission.
    Vilinsky I; Stewart BA; Drummond J; Robinson I; Deitcher DL
    Genetics; 2002 Sep; 162(1):259-71. PubMed ID: 12242238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of neurotransmitter release in the lamprey reticulospinal synapse by antibody-mediated disruption of SNAP-25 function.
    Löw P; Norlin T; Risinger C; Larhammar D; Pieribone VA; Shupliakov O; Brodin L
    Eur J Cell Biol; 1999 Nov; 78(11):787-93. PubMed ID: 10604655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gbetagamma acts at the C terminus of SNAP-25 to mediate presynaptic inhibition.
    Gerachshenko T; Blackmer T; Yoon EJ; Bartleson C; Hamm HE; Alford S
    Nat Neurosci; 2005 May; 8(5):597-605. PubMed ID: 15834421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptobrevin-2-like immunoreactivity is associated with vesicles at synapses in rat circumvallate taste buds.
    Yang R; Stoick CL; Kinnamon JC
    J Comp Neurol; 2004 Mar; 471(1):59-71. PubMed ID: 14983476
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.