These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 10604852)

  • 21. Social interaction and sex differences influence rat temperature circadian rhythm under LD cycles and constant light.
    Cambras T; Castejón L; Díez-Noguera A
    Physiol Behav; 2011 Jun; 103(3-4):365-71. PubMed ID: 21402091
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exposure of pregnant rats to restricted feeding schedule synchronizes the SCN clocks of their fetuses under constant light but not under a light-dark regime.
    Nováková M; Sládek M; Sumová A
    J Biol Rhythms; 2010 Oct; 25(5):350-60. PubMed ID: 20876815
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Non-parametric photic entrainment of Djungarian hamsters with different rhythmic phenotypes.
    Schöttner K; Hauer J; Weinert D
    Chronobiol Int; 2016; 33(5):506-19. PubMed ID: 27031879
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of a short photoperiod on circadian rhythms of body temperature and motor activity in old rats.
    Benstaali C; Bogdan A; Touitou Y
    Pflugers Arch; 2002 May; 444(1-2):73-9. PubMed ID: 11976918
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exercise attenuates the metabolic effects of dim light at night.
    Fonken LK; Meléndez-Fernández OH; Weil ZM; Nelson RJ
    Physiol Behav; 2014 Jan; 124():33-6. PubMed ID: 24184414
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The dorsomedial hypothalamic nucleus is not necessary for food-anticipatory circadian rhythms of behavior, temperature or clock gene expression in mice.
    Moriya T; Aida R; Kudo T; Akiyama M; Doi M; Hayasaka N; Nakahata N; Mistlberger R; Okamura H; Shibata S
    Eur J Neurosci; 2009 Apr; 29(7):1447-60. PubMed ID: 19519629
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Daily cycles in body temperature, metabolic rate, and substrate utilization in pigeons: influence of amount and timing of food consumption.
    Rashotte ME; Basco PS; Henderson RP
    Physiol Behav; 1995 Apr; 57(4):731-46. PubMed ID: 7777611
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of light, food, and temperature as environmental synchronizers of the circadian rhythm of activity in mice.
    Refinetti R
    J Physiol Sci; 2015 Jul; 65(4):359-66. PubMed ID: 25800223
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Forced desynchronization model for a diurnal primate.
    Silva CA; Melo LIM; Pires AR; Barbalho JC; Melo AV; Fernandes DAC; Oliveira EB; Azevedo CVM; Cambras T; Díez-Noguera A; Fontenele-Araujo J
    Chronobiol Int; 2018 Jan; 35(1):35-48. PubMed ID: 29211510
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Short-day response in Djungarian hamsters of different circadian phenotypes.
    Schöttner K; Schmidt M; Hering A; Schatz J; Weinert D
    Chronobiol Int; 2012 May; 29(4):430-42. PubMed ID: 22515562
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Circadian rhythms of body temperature and motor activity in rodents their relationships with the light-dark cycle.
    Benstaali C; Mailloux A; Bogdan A; Auzéby A; Touitou Y
    Life Sci; 2001 May; 68(24):2645-56. PubMed ID: 11400908
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Restricted wheel access following a light cycle inversion slows re-entrainment without internal desynchrony as measured in Per2Luc mice.
    Castillo C; Molyneux P; Carlson R; Harrington ME
    Neuroscience; 2011 May; 182():169-76. PubMed ID: 21392557
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chronic circadian disturbance by a shortened light-dark cycle increases mortality.
    Park N; Cheon S; Son GH; Cho S; Kim K
    Neurobiol Aging; 2012 Jun; 33(6):1122.e11-22. PubMed ID: 22154820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Circadian rhythms of gene expression of lipid metabolism in Gilthead Sea bream liver: synchronisation to light and feeding time.
    Paredes JF; Vera LM; Martinez-Lopez FJ; Navarro I; Sánchez Vázquez FJ
    Chronobiol Int; 2014 Jun; 31(5):613-26. PubMed ID: 24517141
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Light and feeding entrainment of the molecular circadian clock in a marine teleost (Sparus aurata).
    Vera LM; Negrini P; Zagatti C; Frigato E; Sánchez-Vázquez FJ; Bertolucci C
    Chronobiol Int; 2013 Jun; 30(5):649-61. PubMed ID: 23688119
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The homeostatic feeding response to fasting is under chronostatic control.
    Rivera-Estrada D; Aguilar-Roblero R; Alva-Sánchez C; Villanueva I
    Chronobiol Int; 2018 Nov; 35(12):1680-1688. PubMed ID: 30095282
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Constant bright light (LL) during lactation in rats prevents arrhythmicity due to LL.
    Cambras T; Vilaplana J; Torres A; Canal MM; Casamitjana N; Campuzano A; Díez-Noguera A
    Physiol Behav; 1998 Mar; 63(5):875-82. PubMed ID: 9618011
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Circadian differences in stress-induced pressor reactivity in mice.
    Bernatova I; Key MP; Lucot JB; Morris M
    Hypertension; 2002 Nov; 40(5):768-73. PubMed ID: 12411475
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Circadian clock controlling egg hatching in the cricket (Gryllus bimaculatus).
    Itoh MT; Sumi Y
    J Biol Rhythms; 2000 Jun; 15(3):241-5. PubMed ID: 10885878
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Food anticipatory activity and photic entrainment in food-restricted BALB/c mice.
    Holmes MM; Mistlberger RE
    Physiol Behav; 2000 Mar; 68(5):655-66. PubMed ID: 10764895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.